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Abstract

To realize quality microgravity science on the International Space Station, many
microgravity facilities will utilize the Active Rack Isolation System (ARIS). Simulation
capabilities incorporating ARIS will be needed to predict the microgravity environment
to be realized at the various science locations. This paper discusses the development of a
simulation tool for use in predicting the performance of the ARIS in attenuating
disturbances with frequency content between 0.01 Hz and 10 Hz. The development of a
six degree-of-freedom dynamic model of a microgravity facility, built into an
International Standard Payload Rack, is presented. The derivation of this model utilizes
an energy-based approach. The complete simulation includes the dynamic model of the
ISPR integrated with the model for the ARIS controller so that the entire closed-loop
system 1s simulated. Preliminary performance predictions are made for the ARIS in
attenuating both off-board (station) disturbances as well as disturbances from hardware
mounted onboard the microgravity facility. These predictions suggest that the ARIS does
eliminate resonant behavior detrimental to microgravity experimentation. A limited
comparison is made between the simulation predictions of ARIS attenuation of off-board
disturbances and results from a recent ARIS flight test that was flown on the Space
Shuttle. These comparisons show promise, but further tuning of the simulation is needed.
The simulation capability presented in this paper is not intended to provide flight-by-
flight analysis but rather a means to augment technical understanding of ARIS and to

support system studies.
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1. Introduction

One of the primary missions of the International Space Station (ISS) will be to
support scientific research in a microgravity environment. This mission statement
implies that an environment must be established and maintained on ISS in which body
forces on the various microgravity experiments are reduced to acceptable levels. Many of
the physical processes that will be investigated in these experiments are very sensitive to
body force disturbances. If the proper environment is not realized, the experiment
objective will be compromised. Due to the inherent disturbances on any manned space
platform, realizing this environment on the station poses a technical challenge that will
require on-orbit vibration isolation of the experiments.

The planned strategy for providing an acceptable environment for ISS
experiments currentiy involves the Active Rack Isolation System (ARIS), under
development by the Boeing Defense and Space Group. The ARIS is a Space Station
subsystem that provides an isolated platform on which microgravity experiments may be
mounted. In its most common configuration, the system utilizes an International
Standard Payload Rack (ISPR) as the mounting platform and a combination of
acceleration, stiffness compensation and position control loops for active isolation of the
ISPR from unwanted disturbances.

In order that the ARIS be utilized to its full potential, an understanding of system
performance among microgravity payload developers, research management, and the
microgravity community is important. Since the ARIS represents a new technology that

has not yet been utilized for vibration isolation, many questions related to ARIS



performance remain unanswered. An understanding of the impact of payload
configuration to ARIS performance, for example, may lead to methods that can improve
the microgravity environment to be realized on orbit. One of the ways to augment such
technical knowledge of the ARIS is through computer-based simulation.

The major objective of this research is to build and validate a simulation
capability for the ARIS. To meet this major objective, a number of smaller objectives
must be realized. Firstly, a firm understanding of the rigid-body dynamics of an ISPR, or
microgravity rack, must be established. This is accomplished through a detailed
analytical treatment, leading to the subsequent derivation of the ri gid-body equations of
motion for a microgravity rack in orbit about the Earth. The dynamic model of the ISPR
used in the simulation presented in this paper is very similar to that used in a Boeing
ARIS simulation. However, to the author’s knowledge, such a comprehensive and
detailed treatment of the microgravity rack dynamics has not been documented
previously.

A second important step in building the current simulation capability is the
implementation of an ARIS controller simulation that is then integrated with the dynamic
model for the microgravity rack. The simulation tool presented in this papef 1s based
heavily on an ARIS simulation capability currently used by the Boeing Defense and
Space Group. In developing the simulation capability presented in this paper, an effort
was made to replicate the Boeing controller simulation to the greatest extent possible.
This effort represents a first important step in acquiring a valid simulation tool because it

lays the groundwork for a simulation architecture that can be utilized to carry out system



studies. Using such a simulation, end users of the ARIS can augment their knowledge of
the system and assess the impact of unique facility configurations to ARIS performance.

To validate the current simulation capability, results from the simulation are
compared to results from a Boeing ARIS simulation as well as to real performance data
from an ARIS flight experiment (flown on a recent shuttle mission). Comparison to
results from the Boeing simulation helps to ensure that all of the important control
elements are simulated. Comparison of results with real flight data is the final word on
whether the simulation is an adequate predictor of ARIS performance.

This paper is divided into ten chapters. After the introduction in Chapter 1,
Chapter 2 discusses reasons that vibration isolation is needed if quality microgravity
science is to be realized on ISS. Chapter 3 provides a basic problem stétement for
vibration isolation on orbit, a discussion of general isolation strategies, and a detailed
description of the ARIS configuration. Chapter 4 describes the system to be modeled, the
application of the energy method as it relates specifically to the system under
consideration, and a first step in formulating the quantities needed to derive the system
equations of motion. In Chapter 5 the orbital equations of motion for the composite
center of mass are derived, and shown to take the form of the familiar set of equations for
the two-body problem, with the addition of a forcing function. Chapter 6 discusses the
choice of generalized coordinates to describe the local perturbed motion of the
microgravity rack, and expands energy functions formulated in Chapter 4 in terms of
these generalized coordinates. In Chapter 7 the perturbed equations of motion for the
microgravity rack are derived. This chapter provides a detailed description of all terms

appearing in the equations of motion and ways to rewrite and simplify these equations.

3



Chapter 8 introduces the computerized version of the simulation. Details of the ARIS
controller simulation are given in this chapter and predictions of the steady state response
for the system (in the form of transfer functions) are shown for both the passive system
(ARIS inactive) and the active system (ARIS active). Chapter 9 describes the ARIS Risk
Mitigation Experiment (RME), an ARIS flight experiment conducted on a recent Space
Shuttle mission. The simulation version used to simulate the RME configuration is
described and a limited comparison between simulation results and actual fli ght data is
shown. Concluding remarks that summarize the model development and simulation
results are given in Chapter 10.

Figure 1 shows a flowchart for the information presented in this paper. The
blocks in bold outline represent each of the ten chapters (with the appendices also
represented) and the arrows represent the» flow of information from one chapter to the
next. A brief description of the most significant information passed between chapters is

also given.



Forward Sections 1. Infroduction 2. The Microgravity Environment
and the Science Return
Basic problem statement and ARIS m—
: , = description informs system configuration | 4- System Description and
3. Vibration Isolation on Orbit | <4 in mathenmtical formulation Problem Formulation
e e—
5. Orbital Motion of the General energy fimctions General energy expressions used for
Corposite used to derive equations f0r | expansion in tenrs of generalized
Center of Mass (hﬂko:’ortalnm<m coordinates Y
j 6. Lagrangian and Dissipative Function
Appendix A Appendix A |—] for Perturbed Rack Motion
Based on result of Chapter S, orbital Expanded energy functions used to deri
parameters to be considered equations of motion for perturbed rack
predetermined functions of time
] 7. Presentation of the Rack Equatians of Motion
Appendix A 4 Equations of rotion implemented
comrputer-based simulation
Appendix ABCDE andF |1 F'g vl INK Version of the Simulation
" m— Baseline computer simulation modified
10. Conchuding Rermarks 9. ARIS Risk Mitigation t0 simulate flight experiment configurati
(Informed by all Chapters) Experiment -t

Figure 1: Organization of the Paper




2. The Microgravity Environment and the Science Return

In the this paper, and consistent with the definition in reference 3, the term
microgravity environment does not denote a gravity environment at one particular g-
level. Instead, the term is used to refer to a general, low-gravity environment, such as
that realized on any orbiting space platform. To address the feasibility of microgravity
science on ISS, the expected microgravity environment must be characterized and
compared to a microgravity requirement deemed suitable for the planned scientific
activities. The following discussion describes the typical environment on current manned
orbiters and shows that the ISS environment will need to be enhanced if quality

microgravity science is to be realized.

2.1 Typical Environment on Manned Orbiters

Although the environment inside orbiting bodies such as the Space Shuttle is
many times described as weightless, the acceleration of objects rigidly mounted to the
space platform’s structure exceeds levels conducive to microgravity science activities.
Mounted accelerometers flown on the Space Shuttle and Skylab have recorded
accelerations with magnitudes on the order of 10 & [1]. The symbol g, denotes the
acceleration due to gravity at the earth’s surface. These unsatisfactory acceleration levels
are a result of body force disturbances that are always present on the vehicle and have
ultimately reduced the value of the science return on past missions [2].

The acceleration levels seen in the space platform’s structure are the result of

disturbance sources inherent to the vehicle and its orbit. These disturbance sources can



be divided into three major groups [1,3]. One group consists of sudden, transient-type
disturbances, which include propulsive maneuvers, the closing of a hatch by a crew
member, and other similar events. Another group includes vibratory disturbances —
disturbance sources that last for a duration of time and oscillate with frequencies in the
range of 0.01 Hz to 300 Hz. Among other things, vibratory disturbance sources include
treadmills and other rotating machinery mounted onboard the vehicle. The third group
consists of the quasi-steady disturbances — disturbances acting on the vehicle at a
sustained force level for a duration of minutes. The major disturbances in this third group
are atmospheric drag and gravity gradient. These various disturbance sources transmit
forces into the vehicle, which ultimately results in an unacceptable environment in which
to conduct microgravity science activities. The primary concemn of this study is the

prediction of the vibratory disturbance attenuation capability of the ARIS.

2.2 The Microgravity Requirement for Vibratory Disturbances

The microgravity requirement for steady state vibratory acceleration disturbances
is shown in Figure 2 (reference 4). The requirement is defined according to the needs of
the scientific community. The requirement curve is the result of a compilation of
individual requirements for microgravity experimentation across several disciplines.

The current requirement effectively restricts the vibrational disturbance energy
that may be present in the environment onboard the vehicle. The requirement consists of
forty-five points located at the center frequencies of 1/3 octave bands, which span the
frequency spectrum from 0.01 Hz to 300 Hz. The requirement sets a limit on the RMS

level of the cumulative disturbance environment across finite frequency intervals of 1/3



octave. To meet the requirement within a given 1/3 octave band, the RMS level of the
cumulative oscillatory disturbance in that band cannot exceed the value of the

requirement at the center frequency of the given 1/3 octave band.
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Figure 2: Vibratory RMS Acceleration Limit for Microgravity Experiments per 1/3
Octave Band

Generally the physical processes important to microgravity experiments are most
sensitive to acceleration disturbances in the low frequency range [1]. Therefore, the
microgravity requirement is most stringent at low frequencies, demanding that the RMS
level of the cumulative disturbance to which the experiment is subjected be no greater
than 1 micro-g. The increase in the allowable acceleration disturbance with increasing

frequency reflects the higher tolerance of the physical processes to high frequency



disturbances. At frequencies of 100 Hz and above, experiments can be subjected to RMS

levels of one milli-g.

2.3 Predicted ISS Vibratory Environment

In order to compare the predicted ISS environment to the requirement in Figure 2,
a 1/3 octave band RMS representation of the ISS environment must be generated. The
formulation of this representation begins with a prediction of the acceleration
environment in the time domain. An ISS acceleration environment prediction is currently
generated through a NASTRAN model, at the NASA Johnson Space Center, that
incorporates the structural and rigid body dynamics of ISS and the various disturbance
sources that will be present on orbit. By utilizing the power spectral density (PSD) of the
ISS acceleration prediction, an RMS, 1/3 octave band representation is generated (private
communication, Steve Del Basso, Microgravity Analysis Integration Team (AIT), June,
1996).

Figure 3 shows the projected ISS (US Lab) acceleration environment in the 1/3
octave band representation (reference 5), plotted with the requirement shown in Figure 2.
Also shown is the projected environment at the science location when the ARIS is
utilized to attenuate the station disturbances. The projected environment takes into
account the major disturbance sources from U.S. on-orbit operations. Note that
disturbances from equipment used by international partners are not included in the
environment prediction. Figure 3 clearly shows that the ISS acceleration environment is
expected to exceed the microgravity requirement, making the use of vibration isolation at

the science locations necessary.
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3. Vibration Isolation on Orbit

Since the predicted ISS microgravity environment exceeds NASA’s microgravity
requirement, a strategy for isolating the experiments from ISS must be formulated.
Several different systems intended for vibration isolation of experiments on orbit have
been developed. Generally these systems attempt to create an acceptable environment
inside a rigid-walled container (such as a rack or box) that houses one or more
microgravity experiments. The position of the science container is maintained with
respect to the station within an allowable sway space. In most cases these systems
employ active feedback control to reject the detrimental disturbances that would
otherwise degrade the microgravity environment inside of the container.

Examples of isolation systems for use on orbit (other than the ARIS) include the
Suppression of Transient Accelerations by Levitation Evaluation (STABLE) system and
the Microgravity Vibration Isolation Mount (MIM). The STABLE system was designed
and built in a joint effort between McDonnell Douglas Aerospace (circa 1996) and NASA
Marshall Space Flight Center. Development of the MIM is headed by the Canadian
Space Agency. Both isolation systems employ electromagnetic actuators and active

control to isolate the scientific payload [6].

3.1 General Isolation Strategies

The general strategy for vibration isolation from a space platform is shown in
Figure 4. The Space Station and the science container are shown as two rigid bodies that

are in orbit about the Earth. In the general case, numerous science containers could be
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utilized on ISS, ranging from foot-locker-sized boxes to payload-rack-sized facilities.
Therefore, the general situation for vibration isolation on orbit involves more than the
simple two-body problem illustrated here.

The Space Station and science container are passively coupled via an umbilical
assembly as well as by actuators, which are used to control the container motion. In some
systems, such as those employing magnetic levitation for control of the container, the
passive actuator coupling between the station and the container is not present. The
umbilical assembly coupling is generally present, however, in the form of power cords,

data transfer cables, vacuum hoses, and other required connections.
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Figure 4: Vibration Isolation on Orbit

The microgravity container must be isolated from two broad classes of
disturbances — off-board disturbances, which act on the Space Station, and onboard
disturbances, which act directly on the container itself. The off-board disturbances affect
the environment inside the container via the umbilical and actuator assemblies, which

provide a path by which station body forces can be transmitted. Internal disturbances act
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on the container through the hardware mounting interfaces, which are assumed to provide
rigid connections between the onboard equipment and the container.

The group of off-board disturbances includes forces external to the station/rack
system (such as aerodynamic drag) as well as forces induced by mass in motion inside of
the system (such the station’s rotating machinery). Onboard disturbances generally result
from the science facility’s mechanical hardware. These sources may include cooling
fans, fluid pumps, tape drive data recorders, and 2 myriad of other devices with moving
parts. The off-board and onboard disturbances sources are represented in Figure 4.

Another source of disturbance, not depicted in Figure 4, is the gravity gradient
force. The gravity gradient force arises from the spatial separation between the science
container and the composite center of mass of the system. The science container prefers
to be in an orbit that is different than that of the composite center of mass of the system
but it 1s tethered to the station via the umbilical assembly. An additional acceleration is
therefore induced on the container via the umbilical connection as the container is
dragged along by the station [3,7].

To counter the effects of the disturbance sources, a control force (which reacts
against the station) is applied to the container. Although passive isolation strategies have
been contemplated for the on-orbit isolation problem, active control of the container has
been the most popular strategy. The justification for employing an active control system
1s the ability of such a system to provide a low effective stiffness to isolate against low
frequency off-board disturbances, without need for large swayspaces, while also
providing high effective stiffness for isolation from disturbances originating within the

payload [8]. A passive isolation system cannot adapt itself to provide the same quality of
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isolation that can be realized with active control. Passive isolation systems normally
have a preset stiffness that cannot be varied in real time. For an isolation problem in
which largely contrasting stiffness properties are needed to combat different types of
disturbances, this fixed stiffness represents a true shortfall. F urther, low stiffness
materials (needed for isolation against low frequency disturbances) do not provide
sufficient damping [8], which results in large oscillatory amplitudes of the microgravity
container when it is subjected to low frequency disturbances. These large amplitudes
may result in bumping between the container and the station, which would certainly

compromise the environment within the container.

3.2 Description of the Active Rack Isolation System (ARIS)

The ARIS is a state-of-the-art vibration isolation system. The ARIS kit consists
of a set of actuators, snubbers, acceleration and position sensors, and controller
electronics that interface with an ISPR. The ISPR serves as the science container, on
which the various microgravity experiments are mounted. In future sections of this
document, the ISPR is many times referred to simply as “the rack”.

Figure 5 shows a diagram of the ARIS hardware components interfaced with an
ISPR. The production version of the ARIS employs a total of nine accelerometers
mounted in three accelerometer assemblies. Two accelerometer triad assemblies
(ACCELEROMETER #1 and ACCELEROMETER #2) are located in the bottom portion
of the ISPR and another assembly (ACCELEROMETER #3) is mounted on the top of the
rack. The orientations of the accelerometers were chosen so that redundancy is built into

the system in case of a single or double accelerometer failure.
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Figure 5: Major Components of the ARIS Mounted on an ISPR
(Source: ARIS Critical Design Review, Huntsville, AL, November 1996)
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The ARIS employs eight actuators, also arranged to increase system redundancy.
The actuator assemblies consist of a pushrod connected to a voice coil that receives
actuation commands from the ARIS controller. An optical position measurement device
is built into each actuator mechanism. The position measurements are used by ARIS to
maintain the swayspace between the rack and the station wall.

Although estimates of system parameters will be made prior to the launch of the
various microgravity facilities, there will be uncertainty in these parameters. To enhance
ARIS performance, the design incorporates a payload evaluator, which is a system
capable of estimating and updating parameters on orbit. Using known force inputs,
accelerometer data and position data are used to accurately determine ISPR mass, CM
location, and umbilical stiffness properties in the low-gravity environment. The ARIS
controller parameters can then be updated to account for any differences between the
parameters measured on orbit and estimates made for those parameters prior to launch.

Another hardware component used in each microgravity facility is the umbilical
assembly, shown in Figures 6 and 7. The umbilical assembly connects to the ISPR via a
mounting plate that is situated so as not to interfere with the ARIS hardware components.
As mentioned before, the umbilical assembly is necessary to provide power, data links,
and resources to the microgravity experiments and it is also the main path via which
station disturbances are transmitted to the rack. Since the presence of the umbilical
assembly greatly affects the dynamic behavior of the rack, the umbilical properties must

be modeled correctly if the rack behavior is to be successfully simulated.
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Figure 6: Location and Configuration of the Umbilical Assembly

(Source: LP/S Phase 1 IPT Status Review, August 1995)
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Figure 7: Detailed Diagram of the Umbilical Assembly
(Source: ARIS In-Process Review, Seattle, WA, May 1995)
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4. System Description and Problem Formulation

The purpose of this chapter is to provide a description of the station/rack system
that is suitable for the subsequent derivation of rigid body equations of motion. In
Chapters 5 and 7 of this paper, a Lagrangian approach is used to derive the equations.
This approach is an energy-based method that is well suited to problems involving

systems with multiple degrees-of-freedom.

4.1 System Configuration

Figure 8 provides a basic description of the system, which is assumed to consist of
the station, the rack, a set of disturber masses, and a collection of elastic and dissipative
elements. Figure 8 is conceptually similar to Figure 4, but provides a more detailed
description of the system. The Space Station is represented by two figures in the left
portion of the diagram and the science container is represented by two figures in the right
portion. The science container is assumed to be an ARIS rack, although the description
given here can be extended to other isolation systems. The set of Q disturber masses
onboard the station (M) and the P disturber masses onboard the rack (m;) represent
small point-mass imbalances in rotating equipment such as the ISS centrifuge and the Air
Avionics Assembly (commonly known as the AAA fan). The elastic and dissipative
elements represent the umbilical assembly and control system actuators through which
the rack is tethered to the station.

Figure 8 shows the station/rack system in two different configurations. The

figures shown in dashed outlines represent the equilibrium configuration of the system.
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The equilibrium state is defined as the state of the system in a circular orbit whose orbital
rate coincides with the mean angular motion of the actual ISS orbit under consideration.
The altitude of the orbit associated with the equilibrium state is taken as the mean of the
apoapsis and periapsis altitudes for the actual orbit. In this equilibrium condition, it is
assumed that quasi-steady forces (such as aerodynamic drag and gravity gradient) are
active on the system and are of constant magnitude and direction over the time interval of
interest. No other disturbance sources are active when the system is in this state.
External quasi-steady forces actually result in orbit decay and increasing orbit rates over
time, but these effects are negligible over the time intervals of interest so that this
idealized equilibrium condition can be used. In the equilibrium condition, the station,
rack, and all disturber masses are stationary with respect to the center of mass of the
composite system (point L) and therefore are stationary with respect to one another. The
N* umbilical or (passive) actuator assembly is shown as a spring/damper element with an
effective stiffness, [Ky], and an effective damping, [Cy]. The spring element connecting
the dashed outlines of the station and rack is assumed to be stretched so that the
cumulative force in all of the elastic assemblies balances with the quasi-steady forces of
the circular orbit.

The scenario depicted by the solid outlines of the two bodies represents the
system when vibratory disturbances are active. The station and rack have been displaced
to a perturbed state but the center of mass of the system still coincides with pomntL. In
Chapter 5 of this paper, the perturbed motion is decoupled from the predetermined, bulk

orbital motion of the system.
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Orbital Path

Figure 8: Diagram for Analytic Treatment of the Station/Rack Problem

(Note: To avoid complexity in the diagram, the spring/damper element is not shown connecting the station
and rack in the perturbed state; however, the two bodies are always assumed to be connected via this
mechanism.)

This analysis employs several different reference frames, which are shown in
Figure 8. Reference frame OXYZ has an origin at the center of the Earth and its axes are
fixed on distant stars. For the purpose of this study, reference frame OXYZ is considered
an inertial frame. A second frame is the local vertical local horizontal (LVLH) frame,
which is defined with respect to the system orbit. The origin of the LVLH frame (L) is
located at the composite center of mass, with one axis (z) pointing toward the center of
the Earth (nadir direction) and another axis (y) perpendicular to the orbital plane. A third
frame is the station equilibrium frame (SEF) whose origin (point SE) marks the position
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of the center of mass of the station when the system is in the equilibrium configuration
and whose orientation represents the nominal orientation of the station’s body-fixed axes
relative to the LVLH frame. The station is oriented in a Torque Equilibrium Attitude
(TEA) in which the body-fixed axis system is not aligned with LVLH. A fourth reference
frame is the station body-fixed frame (SF) whose origin (point S) is fixed to the center of
mass of the Spgce Station. The axes of the SF represent the principal axes for the station.
When the system is in the equilibrium condition, the axes of the SF are aligned with the
axes of the SEF. The rack equilibrium frame (REF) is the counterpart of the SEF and the
RF is the counterpart of the SF. However, the axes of the RF do not necessarily coincide

with the principal axes of the rack.

4.2 Application of Analytical Mechanics to the Station/Rack System

The purpose of this section is to introduce general expressions for the fundamental
quantities necessary in the application of analytical mechanics to the station/rack system.
Whereas the vector formulation of the equations of motion relies on the use of vector
quantities such as force and momentum, the analytical mechanics approach formulates
the problem in terms of quantities such as kinetic and potential energy and work. These
quantities are then used in a general form of Lagrange’s equations to derive the equations
of motion for the system.

For the purpose of this formulation, a general form of the Lagrange equation is

introduced as the following [7],

i(aLJ_6L+6F_Q
at\oq,) "2, "2, M
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where L is known as the Lagrangian, defined as

L=T-V (2)
T represents the total kinetic energy of the system and V represents the total potential
energy. In Eq. (1) Rayleigh’s dissipation function is represented as F and accounts for
the velocity-dependent dissipative forces of the system. The symbol g, represents a set of
k independent generalized coordinates, and Q, represents the generalized forces
associated with q,.

The total kinetic energy of the system shown in Figure 8 is expressed as the sum

of the translational and rotational kinetic energies [7],

1 - 1 - . 1 _ - 1 - -
T=EI\IIS(VS 'VS)+5MR(VR 'VR)"’E%:MQ(VMQ .VM°)+5§mP(Vm, V)

o Hos) Telfos) +3{on) Tiulfon)

(3)

where all velocity vectors are measured relative to the inertial reference frame (OXYZ)
and the dot symbol (e) denotes the inner vector product. Vectors v, and ¥, are the
velocity vectors of the center of mass of the station and the rack, respectively. The
quantities {m S} and {m R} are 3x1 matrices containing components of the angular
velocity vectors of the bodies about their own centers of mass. The T superscript denotes
the transpose of the matrix. The scalars M and M represent the mass of the station
and rack and [IS] and [IR} are 3x3 matrices representing the moment of inertia tensors

of each body. Vectors v, and v, —are the velocity vectors of the disturber masses,
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which are assumed to be predetermined functions of time in the body-fixed frames of the
station and rack respectively. The quantities M, and m, are the masses of the Q®
station disturber mass and the P® rack disturber mass, respectively. Note that since the
disturber masses are considered point masses, they have no rotational kinetic energy

about their own centers of mass.

The total potential energy of the system is a combination of the energy stored in
the various elastic elements as well as the potential energy due to the position of the
system in the Earth’s gravitational field. The general expression for the elastic energy

stored in the system is
1
VeLaste = 5; {AXN } T[KN]{AXN} 4)

where { AXN} is the column vector representing the extension (translational and

rotational) of the N™ elastic element from its unstretched state and [KN] is the stiffness

matrix associated with this element.

The general expression for the gravitational potential energy is

Mg M M m
VGRAV=—pE(rS+ R+Zr Q+ZI—P-J ()
Q "Mq P ‘m,

S I
in which 1, 1y, Ty, » and I, are the magnitudes of the relative position vectors between
the center of mass of the Earth and the centers of mass of the various bodies in the system
[9]. Since the mass of the station/rack system is negligible in comparison to the mass of

the Earth, the parameter p; is

pe ~GM, (6)
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where G is the gravitational constant and M, is the mass of the Earth.

The dissipative function F of Eq. (1) accounts for the dissipative forces in the
system that are proportional to the velocities of the bodies. In the case of the station/rack
system, these dissipative forces result from the damping effect inherent in the umbilical
and passive actuator assemblies. Since the same physical elements are responsible for the
elastic and dissipative forces, the form of F appears similar to that of the potential

function Vg e ,andis

F%g{m}T[CN]{AXN} ™

where {AXN} is the column vector representing the time rate of change of the extension

(translational and rotational) of the N* element and [CN] is the damping matrix

associated with this element [7].
The calculation of the generalized forces Q, is based on the principle of virtual

work. An expression for the virtual work is

n P _ OT.
SW = F.—>1|5
Z[Z, aqkj a, ®)

k=1 \ =1
where p is total number of forces acting on the system, n is the total number of

generalized coordinates, Fj is the j® force vector, T; is the point where Fj is applied, q,
is the k™ generalized coordinate (as in Eq. (1)), and 3q, is the virtual displacement of q,

[7).
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The virtual work can also be expressed as the result of the generalized forces Q,

acting over the virtual displacements 5q,

5W=kZ_;Qk 8q, 9)

so that, by comparison of the previous two equations, the set of generalized forces can be

calculated as
P oT.
= J
Q, =§F,- T (10)

In the case of the station/rack system, the generalized forces include external forces, such

as aerodynamic drag, that are not derivable from a potential function [7].

4.3 Breakdown of System Motion

One of the most important steps in the analytical mechanics approach is choosing
a suitable set of generalized coordinates to de#cribe the system motion. The purpose of
this section is to introduce a vector breakdown of the translational motion of the system
from which a partial set of generalized coordinates may be chosen. The angular
coordinates used in the formulation are discussed in Sections 4.4 and 4.5, where a
breakdown of the total angular motion of the system is presented. The velocity vectors

Vs Vi » Vs, and VMQ , of Eq. (3), account for the total translational motion of the

system as seen by an observer in the inertial frame. This motion can be expressed
mathematically as the sum of the motion of the system’s center of mass and a perturbed

motion of the individual bodies about their respective equilibrium positions.
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Figure 9 shows the set of position vectors that are used in this analysis. In this
figure the dashed outlines of the bodies in the equilibrium configuration have been
omitted to increase the clarity of the diagram. Vector T, points from the center of mass
of the Earth to the center of mass of the composite system. The equations of motion for
the composite center of mass are derived in Section 5.2 and T, is shown to be a suitable
vector for tracking the orbital motion of the system. Vectors T and T, are fixed in the
LVLH frame and represent the position vectors of the origins of the SEF and REF
measured from the center of mass of the composite system. Vectors af, and T, measure

the perturbed displacements of the station and rack from the points SE and RE

respectively. Vectors RQ and T, point from the center of mass of the station and rack to

the Q® and P* disturber masses. Vectors D, and d,, point from the centers of mass of
the station and rack to the connection points of the N* umbilical (or actuator) assembly

on the respective bodies.
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Figure 9: Vectors for Measuring System Motion
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4.4 System Kinetic Energy

The purpose of this section is to present a formulation of the kinetic energy
expression in terms of motion measured by a local observer (fixed in the LVLH frame).
For the system considered in this paper, the composite center of mass is accelerating due
to its orbital motion about the Earth. Furthermore, the inertial observer is considered to
be fixed in a frame in which a once-per-orbit bulk rotation of the system about its own
center of mass is observed. A description of the system motion from the standpoint of a
local (noninertial) observer can still be obtained, however, as long as the proper
transformations of the inertially measured velocities are performed. This section, along
with Sections 4.4, 4.5, and 4.6, set the stage for the subsequent derivation of the equations
of motion for the composite center of mass of the system (Section 5.2) as well as the

equations of motion for perturbed rack motion (Sections 7.1 and 7.2).
Translational Kinetic Energy

The translational velocity vectors of Eq. (3) may be expressed as the time rate of

change of the position vectors shown in Figure 9. The velocity vector for the center of
mass of the rack, for example, may be expressed as
Vg = Ty + Teg + AT 11)
where all time derivatives in Eq. (11) are calculated in the inertial frame. Similar
expressions can be written for the vectors v, , V¢, and V.
A truly local description of the system motion is that motion seen by an observer

fixed in the local orbital frame. (The local orbital frame will be denoted by the symbol L
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from this point forward.) Although the velocity vectors in Eq. (3) are measured relative
to the inertial frame (denoted with the symbol O from this point forward), they may be
rewritten as vectors measured relative to a rotating frame by applying the following
general transformation,

X=X +ox% (12)
where % is the time rate of change of any vector measured in the inertial frame and %’ is
the rate of change of the vector as measured by an observer in the rotating frame, and ®
is the angular velocity of the rotating frame measured relative to inertial space.

To avoid confusion, a new notation will be introduced in the form of a superscript
that denotes the frame in which vector and tensor quantities are measured. The
superscript will be appended to the vector notation in the following fashion,

X=x" (13)
Using this notation, the vectors given in Eq. (3) would all take an O superscript. (Further
information regarding vector and tensor notation is given in the List of Symbols.)

Applying Eq. (12) to Eq. (11), the rack velocity is written as

S0 _ =L Aol =L , Ao =L 2L, A =L
Ve =Toy + QX T +Tae +Qx g + ol +Q x 4T (14)

where vector notation such as Ai"’RL implies the time derivative of the components only, as

if the base vectors of L were constant, and notation such as sT, simply implies that the

components of this position vector have been resolved along the local orbital frame. The

symbol Q is the orbital rate vector. Note that the quantity Q represents a special case

because it is measured by an inertial observer, but the components of this vector are
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assumed to be resolved along the local orbital frame so that the cross products of Eq. (14)

may be carried out.
Noting that T~ = 0, the total translational kinetic energy of the rack and its

disturber masses is rewritten in the L frame as

1 . -
_= =L =L =L =L =L
Trrarsrack = > Mk(rm + 4T, +Q><(r(M +Tag +AT ))-

(?& +a5r +Ox(Th, +T +Af,{'))
4> Yoy (5, ity 43+ ox{, 7 + 1 4 (13)
P

(’r‘clid +AEx +TF +Qx(T5, +Ta +4Ty +?g'))

A similar expression can be written for the kinetic energy of the station and its set of

disturber masses.
Rotational Kinetic Energy

The rotation of the station and rack about their respective centers of mass consists
of one complete revelution every orbit plus small angle rotations from the equilibrium
orientations. The orientation of the station’s body-fixed frame (SF) deviates from that of
the SEF but attitude requirements limit these deviations to 3.5 degrees, peak-to-peak
(private communication, Alan Henry, Microgravity AIT, January, 1997). The rack also
rotates through perturbed angular displacements as it oscillates about its equilibrium
orientation. However, the stiffness of the umbilical and actuator assemblies limits these
deflections to small angle rotations.

The total angular velocity of the rack can be written as the sum of the bulk orbital

motion and the perturbed motion,

31



By =+ By (16)
where © g, is the angular velocity due to perturbed motion. The angular rates given in
Eq. (16) must be measured inertially if they are to be substituted into Eq. (3). An
expression similar to that of Eq. (16) can also be written for the total angular velocity of
the station.

The components of the inertia tensors given in the last two terms of Eq. (3) are
time varying-quantities except in the case in which they are resolved in their respective
body-fixed frames. If the rotational kinetic energy is to be expressed in terms of the
moments of inertia measured in the body-fixed frames, the angular velocities must also be
resolved along these frames. It is assumed that the components of the orbital rate vector
are known in the local orbital frame so that the total angular velocity of the rack can be
expressed in the body-fixed frame through the following transformation,

for} = J{a"} + {0k} 47
The L and R superscripts denote that the orbit rate and the perturbed angular velocity are

resolved in the LVLH and rack body-fixed frame respectively, although these quantities
are measured relative to an observer in the inertial frame. The quantity [I R/ "] is an
orthogonal transformation matrix that transforms vector components from the L frame to

the rack body-fixed frame. Using Eq. (17) the total rotational kinetic energy of the rack

can be expressed in matrix notation as the following:

Taorance = ([ 21 + {03} TE] ([ 20} + {0 ) (1s)
A similar expression can be written for the rotational kinetic energy of the station.
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4.5 System Potential Energy

The total potential energy stored in the station/rack system is the sum of the
elastic and gravitational energies given in Egs. (4) and (5) respectively. The purpose of
this section is to rewrite the general expressions given in these equations in terms of the
vector quantities shown in Figure 9 and a set of perturbed angular displacement
coordinates. The angular displacement coordinates are used to account for the torsional

elastic energy stored in the umbilical and actuator assemblies.
Elastic Potential Energy

The elastic elements that tether the rack and the station are assumed to possess a
translational stiffness property as well as a torsional stiffness property. Therefore, the
total elastic potential energy given in Eq. (4) must include the energy stored due to both
of these mechanisms. This energy is accounted for by splitting the quantity represented
in Eq. (4) into two parts.

Using the position vectors shown in Figure 9, the energy stored due to the
translational stiffness can be written in matrix form as

Vo =5 2 (e} ot + (2] - () - ast} - D) - (L4])

[kt
(e} ot + - ) -} - 05 - 25

(19)

where the small dot symbol denotes matrix multiplication. The L superscript implies that

the elements of the matrix quantities are vector and tensor components resolved along the

local orbital frame. The quantity {Lﬁq} represents the unstretched length of the N” elastic
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element. The matrix quantity [KTRN ;] is the 3x3 translational stiffness matrix of the N
elastic element.

When the perturbed angular motion of the rack and station are sufficiently small,
the angular rates associated with this motion are integrable into components of small
angle rotation vectors that measure the deflection of the station and rack body-fixed
coordinate systems (SF and RF) from the station and rack equilibrium coordinate systems
(SEF and REF). Further details concerning this assumption are given in Chapter 6.
Under the assumption of small angle rotations, the stored energy due to pure angular

extension of the N® elastic element is

Vror =%§({A9;}-{A9§}+{AG§N})T [kToR] ({Ae;}-{Ae§}+{Ae:N H (20)

where the quantities {Aeé} and {Aek} represent the components of the small angle

displacement vectors for the station and the rack and {AG N } represents the angular
extension of the N® umbilical or actuator assembly when the system is in the equilibrium
configuration. In the equilibrium confi guration, quasi-steady orbital forces are active on
the rack and steady-state torques are induced about the rack CM. These torques are
partially counteracted by the torsional stiffness property of the elastic elements via the
angular displacements {AG o } . The quantity [KTOR,E,] is the 3x3 torsional stiffness

matrix.
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Gravitational Potential Energy
The gravitational potential energy of the rack and the set of rack disturber masses
is taken from Eq. (5). Using the position vectors from Figure 9, the gravitational

potential energy for the rack and its disturber masses is rewritten as

M m
V = R _ P
GRAV,RACK P’E(I.L +fé+&;'+glﬂ +.1:1{-5+Af;+prJ 21

A similar set of expressions is derivable for the gravitational potential energy of the

station and its disturber masses.

4.6 Rayleigh’s Dissipation Function

The method used to construct the dissipation function is very similar to that used
for the elastic potential energy function. The umbilicals and actuators are assumed to
possess a translational damping property as well as a torsional damping property. The
dissipation function, represented in Eq. (7), is split into two parts that include
contributions from the translational and torsional resistance to motion.

Using the vectors shown in Figure 9, the dissipated energy due to the relative

translational velocity of the bodies is written as
P =3 X (ot 85} st} (01))" [ommmt] ([t} +fat}- Lt} -[01) @)

where the L superscript implies that the elements of the matrix quantities are vector

components measured in the local orbital frame. The matrix quantity [CTRN,&] is the

translational damping matrix of the N* damper element, resolved in the L frame.
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The energy dissipated due to pure angular motion of the N* damper element is

assumed to be
Fron =3 ({464} - {a65}) [cront] (fask) - {aby ) 23)

where the quantities {Aég} and {Aé,ﬁ} are the time rates of change of the angular

displacements given in Eq. (20). The matrix quantity [CTOR;] is the torsional damping

matrix.
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5. Orbital Motion of the Composite Center of Mass

5.1 Lagrange’s Equations and Indicial Quantities

As a first application of Eq. (1), the equations of motion for the curvilinear
translation of the center of mass of the composite system are derived. The set of
generalized coordinates chosen for this derivation are the components of the vector T,

resolved along the local orbital frame. For this derivation, Eq. (1) is written as

d ( o) a4 F_, oy
TIEHVAE AT .

where A is an indicial counter that takes the integer values of 1, 2, and 3 assigned to
correspond to the directions x, y, and z (respectively) of the axes of the local orbital
frame. In this special case, the generalized coordinates corresponding to A =1 and A =2
are zero because the vector TS, has a nonzero component only along the z (nadir)
direction.

The translational kinetic energy and the gravitational potential energy of the

system are the only quantities in the Lagrangian that are functions of the components of

T, and/or 'r'c';\,, . These quantities have been given for the microgravity rack and its
disturber masses in Egs. (15) and (21). The kinetic and gravitational energies of the
station and its disturbers have a very similar form. By inspection of Egs. (19) and (20) it
can be seen that the elastic energy stored in the system is a function of the relative

displacements between the connection points of the elastic elements on the station and the



rack, and does not depend on the set of generalized coordinates {réM} . A similar
statement can be made for energy dissipated in the umbilical and actuator assemblies in

that the dissipation function F includes no elements of the set {r5,} or {rCLM} . Likewise,

the rotational kinetic energies contain no components of the set {réM} or {ré'M} . Thus,

Eq. (24) can be rewritten as

d a(TmNo) (Trmans ~ Verav) _
dt( Other ) ak, . =Q (25)

where T,y 1s the total translational kinetic energy of the system and Vg, is the total

gravitational potential energy of the system. These quantities are

1 . . -
_2 L, =L sl =L , =L
Tires = > Mn(rm AR +Qx(rm +Ige +AIR ))'
=L =L, A =L =L =L
(r(M +alp -!-Qx(rCM +Tg +aT ))
1 = - - — - - - -
5 Zm,,(r(;, +aTy +T +Qx(Th, +T5 +4EF +r,,")).
P
=L =L =L  A.f=L =L =L , =L
(r(M +aT +T, +Qx(rCM +Ige +ATy +1, ))
(26)

+%Ms(i"'& +aTr +f2x(f(§M +Tg +AfSL)).

(f30 +a +Ox(28, 72+
+% ZMQ(T& +ALT +§g +§'2x(fc’j4 +T +ATF +Rg)).
Q

(e +RG 400, 42 4t +RY)

and
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The generalized forces are calculated from Eq. (10) as
Ql = Qx = FEXT.X
Q, = Qy = Fm,y (28)
Q3 = Qz = FDCT.Z
where F_ xy,andz represent the components of the total external forces (not derivable

from a potential function) that are acting on the system.

Given the developments up to this point, all of the information needed to derive
the equations of motion (from Eq. (25)) has been collected. As a bookkeeping tool,
indicial notation is employed to reduce the number of calculations that must be
performed. The expressions for the kinetic and potential energies given in Egs. (26) and
(27) can be rewritten in indicial notation as follows:

TTRANS

';‘Mn[fém,i + Ai'llf.i +€5Q; (rCLM,k + rlli-E.k + Arllz'.k )] :

(40 + oty + €@t + 1, + art, )]
%Z £ a8, 425 £ ey 1y 4k, 18,
[f&,. +ay; +ip; +SmQ,n(chMn +Igp FaT Ty, )]

1
L L L L L
+ '2'Ms [rCM.i + afg; + €58 (rCM.k +Tgpy t A5y )]

. L - L L L L
[ICM.i +alg; + eianm(rCM,n I t AL, )]
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1 . 29
+§; M, [i'ch +afg; +Rg; +£,Q (chm +Ig, +aTg, +Rak)]- (29)

=L <L 3L L L L L
[rCMi +afg; +Rg; +8QO(fmn g, +aTg, +RQH)]

To avoid confusion, subscripts used to identify the vector are in capital letters and have
been separated from the indicial notation with 2 comma. Therefore, all subscripts to the
right of the comma are indices that count from 1 to 3. In terms where one index appears
twice, a summation across this index is implied. The quantity €;3 1s the permutation
symbol defined in Appendix A.

The indicial expression for the gravitational potential energy is

VGiAV -

L _L L _L L L L _L L L L L |73
—;,LEMR[rCMirQ,Li +TggTrei +ATRGAR; + 2o Tre +2rCM,.ArRi +2rmAr&,. ]

L L L L L L L _L
—HEZmP [rou.ifc«u +TgeiTRe; T AR AR; +1p;Tp;
P

1
L _L L L L _L L L L _L L_L73
+ 25 iTre; + 2 qy; AR + 206 Tp; + 20 ; ary; + ZIRE,. Ip; +2arg; Ip;

1

L L L L L L L L L L L L 2
_uEMR[erjrCM,i g Tg,; A AL, + 20T 200,00 +20g AT ]

_”EZMQ[rcIiﬁré\a,i +ig T +alg Al +Rg;Rg;
Q

1
L L L L L pl L L L pL Lpl 7173
+ 200, Ta ; +20G,;80; +206,,RG; +2r% a1y, +21% RS, +2a5. R} ]

(31)
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5.2 Equations of Motion

The equations of motion for the composite center of mass are obtained by
applying Eq. (25) to the quantities in Egs. (29) and (31). In presenting the equations of
motion, indicial notation is retained but conversion of the equations of motion to vector

form is straightforward. The equations of motion are as follows:

=L <L ~ {LL L L .L L
Mk[rcm +atg;, +€,, (2 (rcm +ley +AIM)+2£;*Qj (r(m +Aru)

L L L
+8;;-in€QO(ch«.“ o +Arh)]

=L «L =L - L L L L L +L ;L
+Z:ml,[r(MJL + Ay, +ipy +€,5 (rm_k ey +OR, +1",,_k)+28m§2j (r(Mk + Ay +r,,‘k)
P

L L L L
+Sij €m (rCM,n +rRE.n +Arkn +rp_n)]

-L ~L N (L L L L .L
+I\/Is[r(wL +Aaf; +€,5C), (rmk +Ig, +Ar5k)+2£,gk§2j (rmk +Ar&k)

L L L
+ Slji Qj 8imgln'n(rCI\d,u +rSE.n +ArS.n )]

=L =L oL - L L L L L - L 5L
'*'ZMQ[rcm +A, +Rg +8,0) (rcm gy +AG +RQ.k)+28k'in (rcm: +4Afgy +RQ.k)
Q

L L L L
+£linjSixmg2m(rCM.n g, HAT, +RQ,,)]
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(32)

Here the symbol a denotes the angle between the vectors T, and the vector resulting
from Ty +4T;. Note that the cosa derives from the inner vector (dot) product of Tem
and the resultant of Ty + af, . The angle 6, is between T, and the resultant of

Tpe + AT + T, (a vector pointing to the P® disturber mass). The angles B and ¢, have

similar definitions but apply to the station and its disturber masses.
Each of the last four (gravitational) terms in Eq. (32) can be expanded in a Taylor

series of the following form,
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3

f(x) = (1+ax+x?)"? = 1-3ax (33)

where, in the first of these terms,

a=2cosa
and

[Ee + oF |
X=—r—

Ircml
. [ + R . o
so that all higher order terms in lf I are neglected. This approximation is
™M

reasonable, given that the rack and station are tethered via umbilical and actuator
assemblies that hold the bodies’ centers of mass in proximity to the center of mass of the
composite system.

The application of Eq. (33) to the first of the gravitational terms in Eq. (32) gives

_ 73
M T.. + AT, [COSTL (f + AT
e A PP L by 3 ) (hen + 15, +art,)

L L L
(rcm.x +Trea t ArR.l)

_keMy l:l 3 IfRE + A'r'Rlcosa—

ST —
'rcmi erM|

L L L
HeMeTowa “EMR(IREJ. + ArR,).)

~—— — for A=12
. [
- Psl‘\fig]gm,x 3 ZPEMRI(—I:I:LEF + Ar}ll-,x) for A=3
M

(34)
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where higher order terms have again been eliminated. Expansions similar to that shown
in Eq. (34) can be carried out for the other gravitational terms in Eq. (32).

Since the point L (to which the vector Ioy points) is located at the composite
center of mass of the system, a special relationship exists for the positions of the centers
of mass of the various bodies relative to this point. Referring to Figure 9, this

relationship can be expressed as the following:
M (T +4%.) +§:m,,('r‘RE +AF, +T,) + My(Ee +4E) +§MQ(?;.E +AF, +RQ) =0 (35)

From Eq. (35) the following relation is derived.

My (B +4)+ Zmy(2 + 450 +50) + ME +49) + TV + A0 +RY) =5 O
P Q
Egs. (35) and (36) can be used to eliminate a number of terms in Eq. (32).
The acceleration vectors of Eq. (36) can be transformed using the relation
(37)

X0 =% +20xx +Oxx* +ﬁx(ﬁxiL)
where Eq. (37) is derivable from the transformation given in Eq. (12). IfEq. (36) is
transformed according to Eq. (37) and substituted (along with Eq. (35)) into Eq. (32), the

vector equation of motion for the composite center of mass becomes

Helom _ sz-r

. 13 T M
irCMI TOTAL

Tqg +

(38)

where all vector quantities are measured and resolved in the inertial frame.

The homogeneous form of the differential equation given in Eq. (38) is the well-
known equation of motion of the two-body problem. One of the bodies is the Earth and
the other is the entire station/rack system. In this case, the mass of the Earth is so large
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compared to that of the station/rack system that the homogeneous form of Eq. (38)
reflects the central-force motion of the station/rack system in orbit. The term on the
right-hand side of Eq. (38) is the total disturbing acceleration due to any force not
included in the central force term (e.g. drag and solar pressure).

Although Eq. (38) is nonlinear, general analytical solutions of the homogeneous
form of the equation are attainable [9]. Furthermore, well-known methods are available
for dealing with the case in which disturbing forces are present. For the purpose of this
study, the orbital motion of the composite center of mass of the station/rack system is
considered a predetermined function of time. One advantage of making this assumption
is that the equations for the orbital motion need not be integrated in order to solve for the
station and rack motion, leaving only the local perturbed motion of the system as
unknown. Although orbital coupling terms still appear in the equations for the perturbed
motion, these terms are either quasi-steady in nature or they are small enough to
disregard. Accurate estimations of the quasi-steady terms can be made through
knowledge of the ISS orbital parameters. These predetermined, quasi-steady orbital
terms can be treated as DC signals over the time interval of interest, which, when

considering vibratory behavior, is usually of 100 second duration or less.
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6. Lagrangian and Dissipative Function for Perturbed Rack Motion

The purpose of this chapter is to present a suitable choice of generalized
coordinates to be used in deriving rigid body equations of motion for the microgravity
rack and to rewrite the Lagrangian in terms of these generalized coordinates and
quantities that are assumed to be predetermined functions of time. In the previous
chapter, the equations of motion for translation of the composite center of mass were
derivable from a general form of the Lagrangian. Unknown quantities appearing in the

Lagrangian did not preclude the derivation of Eq. (38). Examples of these quantities
include the elements of the P™ disturber mass velocity {1",!'} , which appear indicially in

Eq. (29). As before, the notation {r,f} represents the components of the disturber mass
velocity measured by an observer in the LVLH (L) frame. The disturbing equipment is
assumed to be hard mounted to the rigid chassis of the rack and the motion of the P®

disturber mass is assumed to be a known function of time in the rack body-fixed frame

only. As the rack tilts from its equilibrium orientation, it carries with it the disturber
masses. Since this perturbed motion of the rack is unknown, the quantity {f,ﬁ'} 1s also

unknown. In retrospect Eq. (38) shows that the coordinates {rCM } are independent of the
system’s internal mass motion, so that detailed information about internal motion is
unnecessary in deriving equations of motion for the composite center of mass.

The primary issue addressed in this paper is the vibratory disturbance attenuation
capability of the ARIS. The vibratory behavior of the rack is primarily a function of the

characteristics of the umbilical and actuator assemblies, the vibratory acceleration
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environment onboard the station, and the forces induced by disturber mass motion.
Therefore, detailed descriptions of umbilical and actuator parameters and internal mass

motion are required.

6.1 Choice of Generalized Coordinates

The methodology employed in Chapter 4, in which the system motion is broken
into the bulk motion of the composite system and a perturbed motion of the individual
bodies, reveals an adequate description from which a set of generalized coordinates can
be chosen. The minimum number of independent generalized coordinates needed to
describe the motion of a given system is

n=N-c (39)
where N is the number of degrees of freedom of the unconstrained system and c is the
number of kinematic constraints [7].

For the remainder of this paper, the motion of the station is considered a
predetermined function of time that remains unaffected by the motion of the rack. This
assumption is justified by the large mass ratio between the two bodies. In the assembly-
complete configuration, the station mass is 500 times greater than that of the most
massive microgravity facility. Therefore, the only motion that is assumed unknown is the
perturbed motion of the microgravity rack. (The bulk orbital motion of the rack is
assumed to be given in Eq. (38)). Since the rack has six degrees of freedom as a rigid
body, N = 6. Since no kinematic constraints have been placed on its perturbed motion,

¢=0; thus n=6.
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From the standpoint of an observer in the local orbital frame, the perturbed
motion of the rack may be considered oscillatory motion about a position of equilibrium.
The perturbed motion results in small translational excursions as well as small attitude

deviations of the rack body-fixed frame from the rack equilibrium frame. The perturbed
translational displacement is measured with the set of components {AI'R} , while the

attitude deviation is contained in the transformation matrix [l ®] given in Eq. (18).
The components of the displacement vector 4, , resolved along a chosen set of axes,
represent a suitable choice of generalized coordinates for translational motion. In the
special case in which the angular motion of the body is small, the perturbed angular
velocity vector © gy is integrable into an angular displacement vector, and Lagrange’s
equation may be applied directly [7]. This small-angle assumption was applied to the
potential energy expression in Eq. (20) and can be used to choose a suitable set of
generalized coordinates to represent the rotational degrees of freedom of the rack.

For the purpose of this study, the generalized coordinates are chosen to be the
perturbed translational displacements of the rack resolved along the local orbital frame
and the perturbed angular displacements resolved along the rack body-fixed frame. The
reason for choosing the angular displacements resolved along the RF is that the moments

of inertia for the rack are time invariant in that frame. The translational displacements are

represented by the set {Ar,f} , which tracks the motion of the rack center of mass. The

rotational displacements are represented by the set {Aeﬁ} , which measures the angular

deflection of the rack body-fixed frame from the rack equilibrium frame.
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6.2 Approximating Expression for the Lagrangian

With regard to the application of Eq. (1) to derive the equations for perturbed rack
motion, suitable approximations of the kinetic and potential energy functions are realized
through a Taylor expansion of the exact expressions for these functions. Since
application of Lagrange’s equation reduces the order of the energy functions by one in the
generalized coordinates, linear equations of motion are realized by retaining quadratic

terms in the generalized coordinates.

The general expression for the Taylor expansion in n variables (q1 ,d, ,...,qn) 1s

9002 = 26160+ 3 (1)

r=1

+%ii(‘jf—)(q, -¢.Xq, -¢,) (40)
T2 o (SEE A Y

where c,,c,,...,C, represent the point about which the expansion is carried out. For the
purpose of this study, the point ¢,,c,,...,c, is taken to correspond to the equilibrium
position. Note that the partial derivatives are evaluated at the point q, = ¢/, q, =c,, etc.
[10].

Rotational Kinetic Energy

The rotational kinetic energy of the rack was given in Eq. (18) as

TROTRACK ([IRL]{QL} + (’JPERT}) [I ]([IR/L]{QL}+{CD§ERT})
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The transformation matrix [I R/ "] can be interpreted as being composed of two parts. The

first part represents a (large angle) time-invariant transformation from the [ frame to the
rack equilibrium frame, and the second part represents a time varying transformation

from the REF to the RF so that

[IR/L]____[IR/RE][IRE/L] (41)
where the transformation matrix [IR’ RE] is

0,00, 6,58, +56,56,c6, s0,50, - c6,56,c0,
[17%%]=| - c6,50, c0,cO,~56,50,50, s0,cH, + c6,56,50, (42)
s0, —56,c0, c6,ch,

Here 6,, 0,, and 6, represent three consecutive (small-angle) rotations that bring the
REF axis system into alignment with the RF axes. Under the assumption of small angle

rotations the angles 6,, 6,, and 6, are the same as those represented by the set of
generalized coordinates {ABRR} . The notation s6, ¢ is used to represent sin® and
cos6 , respectively. The transformation matrix [Z Re/L] transforms the components of a
vector resolved in the L frame into components resolved along the REF. The elements of
[1*"*] have the same functional form as those of [£*"%] but the perturbed rotations 8,,
8,, and 8, from Eq. (42) are replaced with a set of time-invariant large-angle rotations.
The components of the perturbed angular velocity, resolved along the rack body-
fixed frame, can be expressed in terms of the angles 8,, 8,, and 8, and their time rates of

change. The angular velocity components are given as
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O prgy 5~ c0,c8, s6, 0|6,
Opprry- [ =] —€0,50;, ¢B, 0}6, (43)
O prr, 2 s6, 0 1](6,

where x”, y”,and z” denote directions along the RF axes. Substitution of Eqs. (42)
and (43) into the kinetic energy expression given in Eq. (18) still results in an exact
expression for the rotational kinetic energy. Starting with this expression, a Taylor
expansion about the equilibrium orientation (6, =6, =8, =0) can be carried out using
the expression given in Eq. (40).

Retaining second-order terms in the Taylor expansion from the sets {6l ,8,,0 3}

and {6,,6,,6,} results in first order (linear) equations of motion in the generalized
coordinates. Since the angles 8,, 6, , and 0, are considered sufficiently small to retain

only second order terms in the expansion, these angles are considered components of the

angular displacement vector designated as A§§ . As mentioned before, consistent with

the choice of generalized coordinates {Aei } , these angular components are the angular
displacements of the rack about the orthogonal set of rack body-fixed axes. The symbols
for the components 6,, 6,, and 6, become A6,., AB,.,and AS...

With respect to only those terms involving coupling between the orbital and

perturbed motion (terms involving components from both Q or Q and A8, or AéR ), the
expansion of the rotational kinetic energy function is presented as if the rack body-fixed
axes are principal axes. The justification for this assumption is explained in Section 7.2
where the rotational equations of motion for the rack are discussed. Coupling terms

between the orbital and perturbed motions appear in these equations of motion, but it is

51



concluded that these terms have minimal impact on the microgravity environment inside
the rack. This conclusion applies to coupling terms involving elements taken from the
diagonal of the inertia matrix, and it applies even more so to coupling terms involving
elements from the off-diagonal because the off-diagonal elements of the inertia matrix are
small compared to the diagonal elements (see Appendix B).

Under the condition just stated, the expansion of the rotational kinetic energy is

"

y

Tromamon = 2,2, (1 ~1.)A0,. + Q.0 (1,. -1,.)a6
+0,0,(1,. -1,.)a8,.

+>(@2 -2 )1, -1, a0 + 21(95. ~ )1, - 1,.)a02.

N

1
2
+ %(Q ~ 2|1, 1. )a62

+0,Q, (1, -1,.)46,.48,. +Q,Q, (I, -1,.)46,.46,,
+0,0,(1,. -1,.)a6,.40,,

+Q,1.A8,. +Q.1.A8,. +Q,1,.A8,.
+Q,1.46,.A8,. —Q 1.A8_.A8,.

+Q, (1, ~1,.)86,.46,. +Q_1,.A6_.A0,.

+Q (I, -1,.)46,.80,. +Q, (I, ~1,.)A6 .46,

1 . )
+3 AegilgijAe,‘;_ ;

(44)

where the subscripts x’, y’, and z' denote directions along the REF axes. Note that in
the expansion given in Eq. (44) all terms of order three (and above) in the generalized
coordinates have been omitted. Furthermore, although the orbital coupling terms
involving the cross moments of inertia have been omitted in the above expression, the

final term is written indicially and can include the cross moments of inertia.
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Translational Kinetic Energy

The translational kinetic energy expression given in Eq. (15) contains the vectors
T- and 1", which represent the position and velocity of the P* disturber mass relative to
the rack center of mass with components resolved along and measured in the local orbital
frame. The disturber mass motion is assumed to be known only in the rack body-fixed
frame because the disturbing hardware is assumed to be hard mounted (bolted) to the rack
structure. Therefore, transformation of the components of £ and T is necessary.

Transformation of the components of the relative position vector is accomplished

through the following:
=l ®
The matrix [l RE/ R] represents a transformation between the RF and REF and is simply

the transpose of the matrix given in Eq. (42). The matrix [l L’RE] 1s the transpose of

[1%5*], also given in Eq. (42).

Transformation of the components of the velocity vector ?PL is partially
accomplished with the relation given in Eq. (12). The transformation takes the following
form,

TF =TF + @y X TN (46)
where ®pg; 1S the perturbed angular velocity of rack, resolved along the RF. The vector

expression on the right-hand side of Eq. (46) has unit vectors in the RF that require

components to be transformed to the L frame for substitution into the kinetic energy
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expression given in Eq. (15). The matrix expression for the transformation of the vector

components is then given as
e} =[] ] ({ [ )0 @7
where [co pm-r] is the antisymmetric second order tensor of O perr -

The matrix quantities [/**% ]| and [o) mu] can be written in terms of the angles
8,, 0,, and 6, (and their rates of change) through the relations given in Egs. (42) and
(43). Exact expressions for the components of the position and velocity vectors of the P®
disturber mass, in terms of the generalized coordinates, can then be obtained. By
substituting these expressions into the disturber mass velocity (given in Eq. (15)), a
Taylor expansion of the velocity about the equilibrium orientation (6,=6,=6,=0)can
be carried out. The expansion is obtained using Eq. (40).

For the purpose of this study, quadratic terms (and terms of higher order) in the
coordinates 0,, 6,, and 6,, as well as in 6, éz , and 93, are omitted. The reason for
omitting these terms is that they are multiplied by the small disturber mass quantity, m, .
These quadratic terms then become third-order terms in magnitude in the kinetic energy
expression. Applying the expansion in Eq. (40), the velocity components of the P®

disturber mass are given as

=R

~l -L L/RE AR _R R -R
Vi, Ty taig; +ij (r,,,j +E€ 4y MO o Tp +smA9RmrP‘k)

(48)
L L L JURE_R , JURE R _R
+&55), (rCM.k gy FaRy Hho Lo i SnnpABR.an.p)

where, consistent with earlier developments, the perturbed angular displacements are
considered sufficiently small so that the components 6, , 6,, and 6 ; can be integrated
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into components of a small angle displacement vector resolved along the orthogonal axes

of the RF.
Elastic Potential Energy
The elastic potential energy function given in Eq. (19) contains the quantities

{d;} and {D;} . These quantities represent components of the position vectors of the
connection point of the N* elastic element on the rack and station respectively (see Figure
9) resolved along the L (LVLH) frame. Because the station and rack are rigid bodies, the
components of these vectors are time invariant in their respective body-fixed frames.
However, owing to the perturbed angular motion of the bodies, the components of these
vectors vary in time relative to the axes of the L frame.

The elements of the column vector {d,’;} may be expressed in terms of the time-

invariant body-fixed components through a transformation like that given in Eq. (45):
{ai} =[] e (49)
A similar transformation can be used for the quantity {D,ﬁ} . Substituting the

transformations for {dl,;,} and {D{}} into the displacement vector given in Eq. (19), the

translational stretching displacement of the N™ elastic element becomes

{ark} = {nie) +{arg o [ ][ ok} - e} - e} - [ Jr=o D3 ) - (s} GO)

Note that Eq. (50) represents an exact expression for the displacement of the N elastic

element.

55



The relation given in Eq. (50) can be expanded about the equilibrium orientations

for both the station and the rack. This expansion is obtained with Eq. (40) as

terw }~ frie} + {0} - e - {0k} - {Li b+ fani o [ a@2 [ a2} - furd } - [ [ ] D)
(1)

where the quantities {d tN} and {DL‘N } are the time-invariant components of the position
vectors d, and D,,, resolved in the L frame, when the rack and station are in their
equilibrium orientations. The quantities {df,f} and {Diﬁ} have the same definition but
are components resolved in the REF and SEF respectively. Note that the components of
{df,f} and {Dfﬁ} are equal to the components of d, and D,, resolved in their
respective body-fixed frames. The matrix quantities [A@ﬁ] and [AG)Z] represent the

antisymmetric tensors of the vectors A8} and A6 respectively. With regard to the

equilibrium condition, the resultant of the vector sum of the first five terms of Eq.(51)is
e+ {ai ) - {2} - D] - {Li ) = {anty ) (52)
where {ALI;N} is the small extension of the N* umbilical assembly when the system is in
equilibrium. The approximation for {AI;;} is then rewritten as
fat} = {arscd + {arg } + [ [0 ake} - furt ) - [ 205 ] D) (53)
In this case the expansion of {Ar,f;} has only been carried out through the first
order terms. Eq. (52) shows that the large displacement vectors cancel out due to the

equilibrium condition, leaving only small terms in the expression for {Arl;} . According

to Eq. (4), the displacement vector is multiplied by itself (via the stiffness matrix) in the
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potential energy function. If second-order terms were included in Eq. (53), the only
additional terms that would appear in the potential energy function would be third and
fourth order terms. Therefore, for the purpose of this study, the expansion given in Eq.
(53) is considered sufficient.
The indicial expression for the relation given in Eq. (53) is
iy ~ AL, +ack, + 1P 008 40, —axl, - 1008, DS, (54)

which can be rewritten as

L L L L L/RE R L L L/SE s
ary; = AL o, +arg -doN,ijIjk ABp, —arg; +DeN.ijI,k A8, (55)
where d,; and D ; are the elements of the second-order tensors dy and DL,. The

elements of these tensors are defined as

L _ L
doN,ij = sjikdoN,k
and

DL

oNG = gjithI;N,k
The quantities d;, , and D, are the k* components of {d N } and {DL“N } , described
above. An approximation for the elastic potential energy due to translation is obtained by
substituting the approximation for displacement given in Eq. (55) for the total
displacement vector in Eq. (19). The resulting expression is shown in the Lagrangian
given in Appendix A.

The translational and torsional stiffness parameters, contained in the quantities

[K’I‘RNN] and [KTORN] , appear in Eqgs. (19) and (20). The parameters were measured in

the rack body-fixed frame and require transformation if they are to be resolved in any
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other frame of reference. The transformation of the stiffness quantities between the RF

and the REF involves small angle correction terms from the transformation matrix

[ bl R] - Therefore, these correction terms include the small angle displacements {AGE} )
These correction terms are omitted in the transformation of the stiffness tensors because
if the correction terms are substituted into the potential energy expression, along with the
expansion given in Eq. (55), the terms that result are third order (and higher). For this

reason, the transformation of the stiffness tensors takes the form
T
[K,I;]z[lu”'] [K:][!RE’L] (56)
where [K,ﬁ] represents either [KTRN;] or [KTOR;]. For the purpose of substitution into
the potential energy function, Eq. (56) states that the stiffness quantities are considered
invariant under transformation between the RF and the REF.
If third-order terms are ignored in the torsional potential energy given in Eq. (20),

the potential energy due to the torsional stiffness property of the umbilical and actuator

assemblies can be rewritten as

Vior = %;({Aeﬁ}— {a07}- {03, })" [KTorE]({a02} - {a6X} - {02, ) (57)

All of the quantities in this equation have been resolved in the RF because this will
become the preferred frame of reference for the final form of the equations of motion.

Just as in the other expansions presented to this point, all third-order terms in Eq. (57)

have been excluded. Consistent with the exclusion of these terms, small-angle correction

terms for the transformation of the quantity [KTORN] between the RF and the REF have

been omitted, as stated in Eq. (56).
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Gravitational Potential Energy

The second term of the potential energy function given in Eq. (27) contains the
vector Ty . As described above, the position of the P* disturber mass at some given time
is known only in the rack body-fixed frame. The position vector of the P* disturber mass
can be expanded about the equilibrium orientation using Eq. (40). Just as in the case of
the kinetic energy expression for the disturber masses, terms of second order and higher
in the coordinates 6, , 0,, and 8, are omitted because these terms are multiplied by the
small disturber mass quantity m,. Because of this multiplier, second-order terms in the
angular coordinates would be considered third-order terms in magnitude relative to other
terms in the Lagrangian. Applying Eq. (40) to the position vector of the P* disturber
results in

+l.’.'/REI'PR_j + l-,-URESjmkAe:.mr:.k ©8)

Lo L L L
Ryp; mIqy; +AIg; + Tge; +/; i

The approximation for the position of the P* disturber mass is substituted into the
gravitational potential energy expression for the P* disturber mass and used to form the
Lagrangian given in Appendix A.
6.3 Dissipation Function

The dissipation function given in Eq. (22) contains the quantities {d¥} and
{D;} . These quantities are time varying relative to an observer in the local orbital
frame, due to the perturbed angular motion of the rack and station. The elements of the

vector {d',;} transform in a manner identical to the transformation given in Eq. (47).
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Since the components of the vector d,, are time invariant when resolved in the rack

body-fixed frame, the transformation is
) = [ ) ]([o e} {a2)) 9

The quantity {D’;,} can be transformed in a similar fashion.

The expression given in Eq. (59) can be substituted, along with the transformation

for {D’;,} , Into the (relative) velocity term from Eq. (22). If these substitutions are made
and the velocity is expanded using Eq. (40), the resulting approximation for the relative
velocity between the rack and the station is

sy, = afg; +dg Iy ABY, — aff, ~ DY IEEAGS (60)
Since the relative velocity term is multiplied by itself (via the damping matrix) in the
dissipation function, the expansion given above has only been carried out through the
first-order terms. Inclusion of higher order terms would result in third- and fourth- order
terms in tﬁe dissipation function. Therefore, the expansion given in Eq. (60) is
considered sufficient for the purpose of this study. F urthermore, inclusion of small angle

correction terms for the transformation of the quantities [CTRN N] and [CTORN] results in

third order terms in the dissipation function and these terms are therefore omitted. The

final form of the dissipation function is given in Appendix A.
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7. Presentation of the Rack Equations of Motion

7.1 Translational Equations of Motion

For the purpose of deriving the equations for the perturbed motion of the rack, the
Lagrangian and dissipative function are formed from those energy expressions that
include the set of generalized coordinates {Ar,f} and {AB&} . Substituting the expansions
given in the previous chapter, a suitable form of the Lagrangian and dissipation function

is derived so that Eq. (1) may be directly applied. Lagrange’s equations for the

translational motion of the rack are then given as

d[ 6L] .  oF
=0 (61)

atl\aart,) " Burk, © oatt,
where A counts from 1 to 3 and all forces acting on the rack are derivable from the
Lagrangian and the dissipative function so that Q, =0 for all A. The final forms of the
Lagrangian and the dissipative function used in Eq. (61) are included in Appendix A so
that the origin of specific terms appearing in the final equations of motion may be traced.
Indicial form is retained in the equations of motion so that the progression from Eq. (61)
to the terms appearing in these equations may be followed.

Carrying out Eq. (61) yields the following indicial terms:

d ( aL ] oL, &
dt aAi'tl{.x aArll{.x aAfé.x

(a)

L S oL L L
M, (rCM,A +€lijjrCM.k +28,, Qioy, + elijjekanerM,n)
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+M, (amer;E_k +sm£2jsm§2mr,{'£’n) (®)

L : L .L L Cc
+MR(Arm + £, Qa1 +28,, Q;afp, + EM-ijGthmAl’R’n) (©)
> Fopa + 8, QL . +28..Q iL Qe _Q rt @
LM \Tama + 8 82Ty +28,,,Q1g,, + 838 Ty s
P
- L e
+Zmr (eh‘ijrRE.k +sljkg'8hmgmrll£n) (©)
+Zm},(ArM +st ArRk +28,,Q; Al +€,,80,8,,Q Arh) ®
-i~ZmP l"’m:‘(rPJ +&,, ABR TR, +2€ 0, ABR L +smA9Rmf“) (8

+ Addmonal forces on rack due to coupling between orbital motion and motion of (h)
disturbers relative to the rack center of mass

+Z KTRN M(ArR “;:i) (¢))
L L/RE R ()]
-2 KTIRNL, dL % A8},
N
+Z KTRNTI:I.M oN IJI;ISE Aeg,k (k)
N
+ 2, KTRNG,; AL, 0
+Z CTRNY, , (afy; - ail;) (m)
- Z CT.RNII:X CN oj lJl’l:/REAé :_k (n)
N
+ Z CTRNII:I WAl cN |Jl_|t/s£Aé:,k (O)
N
P’EMR(II:-E). + Al';",_) ME; m,(ré'm + ATy, + Ty, -;-17{3/11-‘5(1-;‘_‘i + akijB:'mr:k)) ®)
- 3 . 3
,rcul ,rcul
for A=12

Z L
L m,r, L L
HeMgproy, He > M ZPEMR(TRE,A +Arm)

[P | [T
for A=3 @

L L L/RE (R R _R
2“52 mp (rns.x +arg, +1; (rP,j + €y ABg mTpx ))
P

,TCM l
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Discussion of Terms

In the following discussion, the terms (a) through (m) (presented above) are
discussed individually. Physical interpretations of the terms are given along with a
discussion of the significance of the terms in the context of the microgravity environment
or their relative size in comparison to other terms. In cases where, based on an order of
magnitude study, a given term is found to have negligible impact on the microgravity
environment inside the rack or is sufficiently small in comparison to other terms, the term
is omitted from the final equations of motion, which will appear in Eq. (73). When
practicable, the equivalent vector or matrix expressions are given for the indicial

expressions.

(@

M, (iQ';M_l + 8,5 QTo0 + 2615 Q150 + slijth:QOréM,n)

=M, (fCLM +5xfé‘“ +2Qx 1L, +ﬁx(ﬁxi’&))

The terms in parentheses represent the total acceleration of the composite center of mass
measured inertially but transformed to the local orbital frame. Eq. (38) shows that if the
external forces on the station are small, the inertial acceleration of the system in orbit is

nearly canceled by the acceleration due to gravity given in the first term of (q).
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(b)
My (BT + £330 Qutls,) = My (s") xTh +Qx(QxEL ))

The spatial separation of the rack from the composite center of mass results in the quasi-

steady forces given in (b). The first term in the parentheses is the tangential acceleration,

which is negligible due to the small magnitude of Q. The two factors contributing to the

rate of change of the orbit rate are the orbital eccentricity and the external forces such as

aerodynamic drag. However, the effect of the external forces on 5—2 1s negligible

compared to the effect from the orbital eccentricity. Typical eccentricities of the Space
Shuttle and the MIR Space Station (e ~ 0.001) result in magnitudes of ﬁ that are on the

order of 10~ rad/sec’. Using this value for the magnitude of f) , and considering that the

maximum distance of any ARIS-fitted rack from the composite center of mass of the

system is approximately forty feet, maximum accelerations of only about 10~ g, would
be experienced at the science location due to the tangential acceleration effect. Since the
eccentricity of the typical ISS orbit is expected to be even smaller than the typical Space

Shuttle and MIR orbits, the tangential effect can be omitted.

The second term in (b) represents the centripetal acceleration that is due to the (once per
orbit) revolution of the rack about the system’s composite center of mass. The centripetal
acceleration is a significant factor in the quasi-steady acceleration environment at the

science location. An order of magnitude study shows that centripetal acceleration can



result in accelerations at the science location of 12x107 g, for every meter of separation
between the microgravity rack and the system’s composite center of mass. Because of
swayspace limitations, isolation of the experiments from this type of disturbance is not

achievable.

(©)

MR(A'I:;'J_ +8,, QAT +26,, Qafy, + emstQOAr,tn)

= M (s + O ot + 20 x st + Gx (G x a7t))

The terms in parentheses represent the inertially measured, perturbed acceleration of the
rack, transformed to the local orbital frame. The first term is the linear acceleration of the
rack. The second, third, and fourth terms represent the tangential, Coriolis, and
centripetal accelerations respectively. Although orbital forces are many times thought of
as quasi-steady disturbances, the terms represented in (c) can operate in the vibratory

frequency range. The tangential acceleration is negligible due to the small magnitude of

5 . The centripetal acceleration arising from the perturbed motion of the rack is most
significant at quasi-steady frequencies, where the pitch, yaw and roll of the station carry
the rack a maximum distance from the equilibrium position. Assuming nominal
operating conditions on the station, order of magnitude estimates for the centripetal
acceleration represented in (c) show that the upper limit of this term is approximately
3.4x10® g.. This value represents a small portion of the microgravity acceleration
allowance in the quasi-steady frequency range and is therefore omitted from the final

equations of motion presented in this paper.
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The Coriolis term deserves consideration because it does impact the simulation results

presented in this paper. In the Coriolis term, the set of coefficients 2Mge,;, Q; are

multiplied by the perturbed velocity states afy, so that, in the equations of motion, these

coefficients would be added directly to the off-diagonal elements of the aggregate
damping matrix Z [CTRNN] given in term (m) above. Depending on the orientation of
N

the ARIS rack under consideration, the largest Coriolis coefficient could be a full order of
magnitude larger than the various off-diagonal damping coefficients. Using the
~ estimation for the damping matrix given in this paper (see Appendix D) and assuming a

full set of umbilicals, the Coriolis coefficients will always be a full order of magnitude

less than the eigenvalues of Z [C’I’RNN] - Although the Coriolis term is not included in
N

the final equations of motion presented in this paper, the possible impact of this term to
the simulation results should be noted. Further discussion regarding the effect of the
Coriolis term is given in Section 8.4, where closed-loop ARIS attenuation results are

presented.

@
> om, (£ Qiro, +26,, Q0L +e,. Qe Q rt
Mp \Tema + 8 b2Tans +28,5 Q il +€,, Q.8 Q 18,
P
= Y m, (5, + Ox 5, +20x 5L, +Qx(QxiL,)
P
This expression accounts for the force induced on the disturber masses due to the orbital

motion of the composite center of mass. This force is nearly balanced by the force due to
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gravity at the composite center of mass (second term in (q)). Note that any force on the
disturber masses results in an equal and opposite reaction force on the rack and is,
therefore, present in the equations of motion for the rack. Since all of the quantities in (d)
are assumed known, these forces could be moved to the right-hand side of the equations

of motion, to become forcing functions of opposite sign (direction).

(e)
Zmp(smﬁjr&k + smﬂjsmﬂmréh): Zmp(ﬁ x Tk +Qx(Qx TRLE))
P P

These terms account for the quasi-steady tangential and centripetal forces acting on the
disturber masses due to their spatial separation from the composite center of mass. The

tangential effect is negligible because of (among other reasons) the small magnitude of

Ez . The more significant force is the centripetal force. Assuming a full complement of
disturbers, the maximum acceleration that the centripetal force term in (e) could induce in
a rack is several orders of magnitude less than the micro-g level. Considering that the
disturber mass is normally taken to be 0.5% of the mass of the rotating part (see
Appendix C), the mass ratio between the disturber masses and the rack mass is very

small. Therefore, the terms in (€) can also be neglected based on a comparison with the

terms in (b), given above.
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=L - L =L L
Zmp (Ar,,“l + 85, QA +26,, Qoafy, + stjstmArR_n)
P

= Y om, (5 + Gx af +20x a3 + 2x(@x )
P

The expression (f) represents the forces induced on the disturber masses due to perturbed
motion of the rack. These terms are negligible in comparison to the terms in (c) because

the masses of the disturbers are small compared to the mass of the rack (see Appendix C).

(8
Dom, 155 (iR e, ABR TR, +26,, ABR iR 46 005 R, )

P
where
Tpy + € AR Ty +26,, ABY iR +e. AOR iR =
A A5§ x T} + 2A6: x T} + ABR x I
The first term in parentheses represents the linear acceleration of the disturber masses
measured relative to an observer in the rack body-fixed frame. The second and third
terms in (g) are the tangential and Coriolis terms respectively and result from the rotation
of the disturber masses about the rack center of mass due to the perturbed rotational
motion of the rack. Of these two terms, the Coriolis term is the most significant.
Assuming a standard compliment of onboard disturbers, the Coriolis term is estimated to

be at least one order of magnitude smaller than the first term in (g)- The final term in (g)

represents a first order transformation of the disturber force from the RF to the REF.
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Assuming a standard complement of onboard disturbers, all in phase with each other and
operating at peak force input, the forces represented by the last term in (g) are at least one
order of magnitude smaller than the forces induced by the umbilical and actuator
assemblies due to perturbed rotation of the rack (given in (j)). For the purpose of this
study, only the first term in (g) is retained in the final equations of motion presented in

Eq. (73). Regarding the terms in (g), the vector equivalent of the indicial terms in
parentheses is given but the subsequent transformation denoted as /;/** would be

otherwise represented as a matrix multiplication.

L)

Additional forces on the rack due to coupling between orbital motion and motion of
disturbers relative to the rack center of mass.

Because disturber masses are located at some distance (no greater than one meter) from
the center of mass of the rack and have velocity relative to the rack CM, they experience
rotationally induced forces due to orbital motion that are different from those experienced
at the center of mass of the rack. An example of one of the terms in (h) is the centripetal
force on the P* disturber mass due to its spatial separation from the rack center of mass,

given as

The force terms in (h) can be neglected because the magnitudes of the reaction forces on

the rack are several orders smaller than the forces induced by the rapid rotation of the

disturber masses inside the rotating equipment (given in the first term of (g)).
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(1)
Z KTRN;;.: (Arlll',i ‘Arslji) = Z [KTRN,I}]{AI}:' - AI'SL}
N N
The terms in (i) represent the restoring forces in the elastic elements arising from the

relative perturbed displacement between the rack and station.

0)
-2 RTRNL AL AGL, = -3 Rk [, [ ae)

Expression (j) accounts for the elastic forces arising from the rotation of the rack about its
own center of mass. This rotation results in translation of the umbilical and actuator

connection points that induces a restoring force in the elastic elements.

(k)

3 Krrovly, i, [F¥A03, = 3 [Krewk ][ 1] a0

N

Expression (k) is similar to (j) but applies to station rotation about its own center of mass.

M

The term (1) represents a small elastic force that counteracts the orbita] forces on the rack

in the equilibrium configuration.
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(m), (n), (0)
These terms are similar to (i), (j), and (k) but represent forces induced by the damping

effect of the umbilical and actuator assemblies.

®

L L LRE( R R _R
PEMR(r;{E L+ Arl]{-l) Pzz mP(rRE.l +arg, +1; (rP.j +€ymABg mlpy ))

- |3 !
| Fene

for A=1lor2

The terms in (p) are gravity gradient terms that result from the spatial separation of the
rack and the disturber masses from the composite center of mass of the system. The
terms in (p) are given for the cases in which A takes the value of either 1 or 2, which
correspond to the x and y directions of the L frame respectively. Just like the centripetal
force described in (b), the gravity gradient force is a significant factor in the quasi-steady
environment at the science location. The gravity gradient force arising from the
perturbed displacement of the rack can be omitted in the final equations of motion
because this force results in rack accelerations that are small compared to the micro-g
level. The entire second term in (p) is negligible because it results in accelerations in the
rack that are of the same order of magnitude as the centripetal term given in (e) (several

orders of magnitude less than the micro-g level).
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B o]

for A=3

For the case in which A takes the value of 3 (corresponding to the nadir direction) the
central gravitational force terms appear in the equations of motion. These first two terms
are nearly balanced by the terms given in (2) and (d). The last two terms represent the
gravity gradient force along the z direction. Consistent with the result in reference 3, the
magnitude of the gravity gradient force along z is twice that of the x and y directions.
Just as in (p), the entire last term in (q) can be omitted and the gravity gradient force

arising from the perturbed displacement of the rack is also negligible.
Force per Unit Mass at the Composite Center of Mass

Utilizing the equations of motion given in vector Eq. (3 8), the terms in (a) and (d)

along with the central force terms of (q) can be combined to give
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N 3
e e
Feaa
=| Mg + Zmp ,
P MTOTAL
Foaa . . .
where M 1s recognized as the acceleration of the composite center of mass due to
TOTAL

forces external to the station/rack system. For the purpose of this study, the external
forces are considered to be quasi-steady in nature and of constant magnitude and direction
over the time interval of interest. This assumption is justified because the vibratory
microgravity environment, which is the main subject of this paper, includes oscillatory
behavior with a frequency content only as low as 0.01 Hz. The implication is that the
longest time window of interest is about 100 seconds, which is a small fraction of the
5,400 second orbital period. Assuming a low eccentricity orbit, the station altitude
changes little during this 100-second time interval, and the system covers only a small
portion of the total orbital distance. Therefore, parameters such as atmospheric density

and solar radiation incidence are assumed to remain constant over this time interval.
Equilibrium Force Balance

To this point in the paper, it has been assumed that the orbital path of the
composite system could deviate from the nominal circular orbit that defines the
equilibrium configuration of the system. When reboost maneuvers for ISS are performed,

a circular orbit will be targeted, but this orbit can only be realized to within a certain
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tolerance. Although external forces result in orbit decay and increasing orbit rates, it has
been assumed that the altitude and orbit rate of the system remain unchanged due to these
factors over the time intervals of interest. The assumption that the ISS orbit will not be
perfectly circular after reboost results in tangential acceleration terms in the equations of
motion because the time rate of change of the orbit rate is assumed to be non-zero.
However, the tolerance on reboost altitude is small enough that the time rate of change of
the orbit rate due to orbital eccentricity is very small (see explanation for term (b) above).

Because the deviation of the station’s low eccentricity orbit from that defined for
the equilibrium state (see Section 4.1) is so small, it is permissible that the altitude, orbit
rate, and external forces for the equilibrium orbit be used to estimate the quasi-steady
forces encountered in the actual station orbit. The dominant quasi-steady forces can be
accounted for by using the parameters from this idealized orbit. Furthermore, consistent
with the discussion of terms in the translational equations of motion, the orbitally induced
forces on the small disturber masses are negligible because the accelerations induced in
the rack due to these forces are several orders smaller than the micro-g level.

Given the assumptions stated above, several terms can be omitted from the

equations of motion. Those omitted include any term containing components of the

vector fz » all of the terms in (e), (f), and (h), and the disturber mass gravity gradient
terms in (p) and (q). Using steady-state parameters from the equilibrium orbit to estimate
the quasi-steady forces leads to an equilibrium balance of force terms that cancel out of

the equations of motion. The equilibrium condition can be stated as
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N

For the case in which A = 3, the third term takes a multiplier of -2, as in (q).
Mapping Station Motion to the Station/Rack Interface

The sum of the second term in (i) and the term in (k) is

- Z KTRNr]:ui (Arsl:i - D:N,ij I;Z/SEAeg.k) (64)
N

If the second-order terms resulting from the transformation of the components { AO:}
from the SF to the SEF are neglected, then the vector expression associated with the
terms in parentheses in Eq. (64) is

arg; — Dl ABS . = ATy +ABg x D = AX,, (65)
The relation given in Eq. (65) is recognized as a first-order approximation of the
displacement of the connection point of the N* elastic element on the station due to rigid
body motion.

The calculation of certain parameters in the equations of motion for the rack is

made easier by introducing the vector aoN into Eq. (65) in the following fashion:

ATg; — Df;N,ij AeIs',j = Al'sL.i +8iﬁ<A6§,j(D§N.k —d:;N.k)-*'eijkAe;jd:;N.k = AX::T,i (66)

where the first two terms to the right of the first equal sign are combined as

ArsL.i + sijkAe;j(Dcl:‘N,k —dqla‘N.k) = Axr%z.i - si;lAeé,jdtN,k = ARI]:’.i 67
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The components AR,’;'i represent a first-order approximation of the displacement of a
point in the vicinity of the rack as if that point were rigidly attached to the station. In

future discussions, the set of points tracked by the position vectors A}—{,'; are collectively
referred to as the station/rack interface because they are ir: the vicinity of the area where
the station connects to the rack via the umbilical and actuator assemblies. It must be
noted, however, that the set of points referred to as the station/rack interface are not
coincident with the umbilical and actuator connection points on the station.

Similar reasoning can be used for terms containing the rates of change of the
station states given in (m) and (0). From these terms, one obtains the velocity of the N®

connection point on the station measured relative to the L frame, which is

VI = afl + ABL x DL, (68)
The velocity can be rewritten as
o + 8% x DY, = ail, ~ D, A6, = ARL  + £5.A6% L., (69)
where
(70)

ARy, = oy, +65,808 (Dl —db, )= Vi, —e, A0L dE
From a practical standpoint, the difference between the velocity represented by
the vector Aﬁ; and that represented by Vy: is negligible. By substituting the relation
given in Eq. (69) into the equations of motion, however, the mathematics associated with
system damping is simplified because the damping matrix associated with the station
states can be made identical to the damping matrix associated with the rack states (see Eq.

(73)). To determine the elements of the aggregate damping matrix, it has been assumed
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that the damping matrix is orthogonal to the modeshapes associated with the rigid body
motion of the undamped system. Given an estimation for the modal damping factors, the
physical damping matrix can then be calculated (see Appendix D). The ramification of
assuming equal damping quantities on the right- and left-hand sides of the equations of
motion is that the off-board environment, assumed known at some point on the station,
must be mapped to the station/rack interface before it can be used as an input to the
equations.

In this section a two-step process is used to map the off-board motion to the
station/rack interface. The off-board environment is assumed known at the center of
mass of the station and Eqs. (65) and (68) are utilized to map the motion at the station
CM to motion at the umbilical and actuator connection points. In the second step, the
calculated motion at the connection points ( AXy;; and V}’;i ) 1s used in Egs. (67) and (70)
to solve for the motion at the station/rack interface.

In actuality the local motion of the station (at the umbilical and actuator
connection points) is due to flexure in the structural components of the station as well as
the rigid body contribution given in Egs. (65) and (68). If the local structural behavior of
the station is assumed to be unaffected by the motion of the rack, then the local
displacements of the station can be assumed to include this structural behavior as well.

Generalizing the local station motion to include structural motion also means that the

vector quantity Aés must be interpreted as the local rotational motion in the vicinity of
the connection points. Since low frequency global structural modes look like rigid body

motion locally, the station is assumed to be locally rigid and the rotational motion is
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assumed to be the same about all of the connection points. From this standpoint, the rack
becomes a six degree-of-freedom, harmonic oscillator, connected to a wall of infinite
mass via a system of spring/damper elements. The translational and rotational motion of
the station at the umbilical and actuator connection points is then treated as a
predetermined forcing function to the system, and it can be simulated by the correct

combination of translational and rotational inputs at the station/rack interface.

7.2 Rotational Equations of Motion

The derivation of the rotational equations of motion is obtained by the application
of Eq. (1) to the Lagrangian and the dissipative function shown in Appendix A. These

equations of motion are

df a J oo _oF
dt\ oAy ,) oABy, " AAGR, (71)
where all torques acting on the rack are assumed to be derivable from the Lagrangian and

the dissipative function.

Carrying out Eq. (71) yields the following terms

d( 6L] aL oF

— - —_— <+ > =

dt\ 2A6%, ) T 2A%, T 2A6F,

1.40,. - 1,..A8 . -1,..A6,. (@) For A =1 only

+1L.Q, +Q (1. - 1,)A0,. +Q (I,. ~1,.)A0,. Permute indices for

+[Q§.(1y.. - L)+ QL(L,. -—Iy,)]AGX" A=2and A=3

+0Q,.Q (1. -1.)a6,. +Q_0Q_(I. —1,.)40,. , _ o
Oy (L -1 ) d o ( g ) ) Orbital coupling terms involving

+Q (L +1,- ~1,.)48,. + Q_(I,. - 1,. - 1. )A8,.  cross moments of inertia have been

-Q,.Q,(1, -1,.) omitted
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Discussion of Terms
In discussing the terms in the rotational equations of motion, the vector and
matrix equivalents are not given as they were for the translational equations of motion.
For the most part, the same forces (with the same vector and matrix equivalents) appear
in the rotational equations of motion, but they are subsequently transformed to torques
via a cross product operation. The reason is that the line of action of the various forces in
the system do not generally run through the rack CM and, as a result, various moments

are induced about the CM.

(a)

L.AB,. -1,..48,. ~1..A8,_.

+L.Q + O (1. ~1,.)80, + O, (1. ~1,.)a0
+[Qj,( -1 )+ Q3 (1, -1 )]

+Q,0, (1, -1,.)88, +0,0,(1, -1, )s,.
+Q, (L. +1,. -1, )a8,, +Q, (1, -1, -1,.)a8,,
-0,0,(1, -1,

y"

This represents the inertial time rate of change of the angular momentum of the rack
transformed to the rack body-fixed frame. The equation is presented for rotational

motion about the x” axis only (A =1). The equations of motion about the y” and z"

axes can be easily obtained by cyclically permuting the indices of (a).

For the purpose of presenting the equations of motion, orbital coupling terms involving
cross moments of inertia have been omitted. This representation is sufficient to show that
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only the first three terms in (a) need to be retained in the equations of motion for rotation

about the x" axis. The largest coefficients of the components of AéR , appearing in (a),
are many times smaller than the stiffness coefficients given in terms (g) and (i) of the

rotational equations of motion and therefore have little impact on the dynamic model.

The coefficients of the components of AéR , given in (a), are compared to the damping
coefficients given in terms (m) and (o). The coefficients appearing in (a) are found to be
approximately one order of magnitude less than the smallest eigenvalue of the damping
matrices given in (m) and (o). These findings suggest that the umbilical and actuator
assemblies induce torques on the rack that are considerably more significant than the
torques induced by orbital coupling terms. Therefore, the orbital coupling terms are not
included in the final equations of motion for the rack. Since the off-diagonal elements of
the moment of inertia matrix are smaller than those of the diagonal, orbital coupling
terms involving cross moments of inertia are also omitted from the final equations of
motion. The conclusions presented in this discussion are also valid for the equations of

motion for rotation about the y” and z” axes.

R yRE/L{ L N L L
ZmPslurP.!lri (rCM.i +8iﬂ(erCM.k +2€iﬁ<erCM.k + 8QOSnﬁ<ercm,k)
P

These terms represent the moment of the time rate of change of linear momentum (due to
orbital motion) of the disturbers about the center of mass of the rack. This torque is

nearly canceled by the torque induced by the action of the gravity force in (q).
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This is the torque induced about the center of mass of the rack due to the quasi-steady
tangential- and centripetal-type forces acting on the disturber masses. These torques are
negligible in comparison to the first term of (e) below and are, therefore, omitted from the

dynamic model.

(@)

RE/L L
Z M€, Tl (ArRl + s,ﬁ(Q Aty + 2e,Q; N oy x T EimQp€, Q2 ‘AI'R,k)
P

As the rack moves, it carries with it the disturber masses. Since the disturber masses are
not located at the rack CM, this perturbed rack motion induces torques about the rack
CM, which are represented in (d). These terms are negligible in comparison to the first

term of (e).

©
Y s (B, + S AOY TR, + 26, ABK 58, 46, A0% %)
?
The terms in (e) represent the time rate of change of the angular momentum of the
disturber masses about the rack center of mass due to their acceleration relative to the

rack CM. The terms in parentheses are identical to those presented in terms (g) of the

translational equations of motion. Consistent with the discussion of terms (g), the second
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and third terms in (e) (the tangential and Coriolis terms respectively) are omitted from the

final equations of motion presented in this paper. A comparison between the coefficients

of the components of Aéﬁ given in the last term in (e) and the eigenvalues of the
stiffness matrices given in terms (g) and (i) of the rotational equations of motion reveals
that the ratio between the largest coefficient in (e) and the smallest eigenvalue of (g) and
(1) 1s 0.07. For this reason, the last term in (e) is omitted from the final equations of

motion as well.

®

Additional torques on rack due to coupling between orbital motion and motion of the
disturbers relative to the rack center of mass.

The set of torques described in (f) are due to the forces described in term (h) of the
translational equations of motion. The relative positions between the disturber masses
and the rack center of mass act as moment arms so that forces at the disturber mass
locations result in torques about the rack CM. Just as the force terms in (h) of the

translational equations are negligible, the torques described in term (f) are also negligible.

(8
Z KTOR:,M (Aei,i - Ae;i)
N

The expression (g) is the restoring torque induced in the umbilical and actuator

assemblies due to relative angular displacements between the rack and the station.
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Since the elastic elements tethering the rack to the station are not connected to the rack
center of mass, relative linear displacements between the rack and the station induce

moments about the rack CM, which are represented by (h).

®

=2 [Frdy,  KTRNE ,dL, L JEEABR
N

oN,ij
When the rack undergoes angular displacements about its center of mass, translational

displacements of the umbilical and actuator connection points result. These

displacements induce restoring forces at the connection points and torques about the rack

center of mass given in (1).

®

> AL KTRNY DL, JVSEAGS
N

The expression (j) is similar to expression (i) but applies to the angular displacement of

the station about its center of mass.



(k)

2 L KTRNY AL,
N

When the system is in the equilibrium configuration, the quasi-steady forces, which are

assumed to act at the center of mass of the rack, result in a small translational

displacement of the rack from the unstretched position. This displacement results in

restoring forces in the umbilical and actuator assemblies that induces small torques, (k),

about the center of mass of the rack.

)
Z KTOR:J,M A8 :N.i
N
Term (1) represents a restoring torque in the umbilical and actuator assemblies due to the
small angular extension of these elastic elements when the system is in the equilibrium

configuration.
(m), (n), (o) and (p)

These terms are similar to (g), (h), (i), and (j) but for moments induced by dissipative

forces.
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The action of the gravitational force on the disturber masses results in a torque about the

rack center of mass that is nearly canceled by torque terms given in (b).

(r) and (s)

R [;RE/L{ L L R R _R
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P
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and
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] e

Expressions (r) and (s) represent torques about the rack center of mass due to gravity

gradient forces acting on the disturber masses. These torques are negligible due to the

small mass of the disturbers.
Rewriting the Rotatiénal Equations of Motion

As in the case of the translational equations of motion, the force Per unit mass
relation given in vector Eq. (38) may be utilized to combine terms from the rotational
equations of motion. The terms in (b) along with the terms given in (q) can be combined

to give
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where €,,5; /- Fge; isrecognized as a small quasi-steady torque about the rack’s

center of mass.

In the equilibrium force balance for the system, the orbitally induced forces on the
small disturber masses are negligible because the accelerations induced in the rack due to
these forces are several orders smaller than the micro-g level. A similar assumption is
made concerning the orbitally induced torques on the disturber masses. This assumption
leads to the omission of the small quasi-steady torque term on the right-hand side of Eq.
(72) as well as the torques represented in terms (c), (d) and (f) of the rotational equations
of motion. The torques given in terms (k) and (1), along with the last term in (a) (where
indices are permuted to get the appropriate y- and z- direction term), are then assumed to
cancel each other in the rotational equations of motion, so that an equilibrium torque
balance can be formulated for the system.

The rationale used in mapping the station motion to the station/rack interface can
be used in the rotational equations of motion as well. The station displacements from
terms (h) and (j) can be combined (as can the station rates from terms (n) and (p)) to
reflect motion at the interface. Just as in the case of the translational equations of motion,
the off-board environment, assumed known at some point on the station, must be mapped

to the station/rack interface before it can be used as an input to the equations.
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7.3 Equations of Motion in Matrix Form

The primary frame of reference up to this point in the development has been the
local orbital frame. This frame was chosen because of the practical relations of its axes to
the orbital motion and the intuitive form of the gravity gradient terms. Since the
objective of this research is to build a simulation capability for the ARIS, the rack body-
fixed frame provides a more suitable frame in which to write the final form of these
equations. The reason is that the RF is local to the rack motion and because ARIS
controller hardware, such as the accelerometers and actuator pushrods, are assumed fixed

relative to this frame.
The vector and tensor quantities given in the translational and rotational equations

of motion in Sections 7.1 and 7.2 may be transformed to the REF through the time-
invariant transformation matrix [l RE/ "]. In the subsequent transformation from the REF

to the RF, the small-angle correction terms are omitted because these terms result in small
second-order terms in the equations of motion. Under this condition, the translational and
rotational equations of motion can be represented in the matrix form to be given in Eq.

(73). In this equation, all rack and station states are measured relative to the REF but
resolved along the RF. As for the disturber mass motion, [r,f] is the matrix representing
the antisymmetric second order tensor associated with the position vector %" and is used
to calculate the vector cross product of ¥ and t}.

Eq. (73) reflects the assumption that the coupling effects between the orbital

motion of the system and the perturbed motion of the rack are negligible so that the

locally observed motion is approximated as that exhibited by the equivalent inertially-
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based system. Although quasi-steady orbital-induced accelerations must still be added in
order to compute the inertial acceleration of the rack, these accelerations can be assumed
independent of the local perturbed motion of the rack. The resulting equation of motion

in matrix form is

5 2

[ Slemsy] S femJlax] {M}
_%[dr}:][cmr%] g[dﬁ]T[CTRNﬁ][dﬁhg[CroR,‘:] A,
_ %:[KTRN:,] ;[KIRN,‘E][d:]T {AIR}
_%:[d:][KTRNi] g[d:]T[KTRN:][d;]+§[KTOR:] A8,
(glomi)  SEmilal
_g[di][mﬁ] %:[dﬁ]T[CTRNﬁ][dﬁh;[CTORi] A

— g:[KTRNﬁ] Z[KTRN IENE {AR }
_%[dﬁ][KTRNS] Z[d*‘] [KTRN J[ax]+ Z[K’I‘OR ]|l a8

(73)
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7.4 Calculation of Inertial Acceleration

The equations of motion given in Eq. (73) are written in terms of accelerations
and velocities measured relative to the REF. From the standpoint of maintaining a
microgravity environment inside the rack, the accelerations must be known in the inertial
frame because the physical processes associated with the various micro gravity
experiments are affected by the total inertial acceleration. The inertial acceleration is
a4 =8y +3,,p (74)
where 3, is the total inertial acceleration of the rack center of mass, d,; is the inertial
acceleration of the point RE, and @, is the inertially measured acceleration of the rack
center of mass relative to the point RE.
The total acceleration of the point RE is
gp =8y +3cpy T3 (75)
where @, is the acceleration due to the external forces, 3cpyr is the centripetal
acceleration due to the once per orbit rotation of the point RE about the composite center
of mass, and 3 is the acceleration due to the gravity gradient effect. The tangential
acceler;ﬁon is not included because it is negligible. The centripetal, gravity gradient, and
external forces were derived in the equations of motion for the rack and discussed in

Section 7.1.
The acceleration of point RE due to the action of external forces is

(76)

g

gm

M TOTAL
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F
where —=2— is the same quantity given on the right-hand side of Eq. (38). Although

M TOTAL

the components of the vector a,; are assumed to be known (resolved) in the REF, they
must be resolved along the rack body-fixed frame if they are to be added directly to the
acceleration components computed in Eq. (73). For the purpose of this study, the small-
angle correction terms resulting from the transformation of the quasi-steady accelerations
from the REF to the RF are negligible because changes in orientation of the rack result in
restoring forces in the umbilical and actuator assemblies that are much greater than those

resulting from the small correction of the quasi-steady force terms.

The centripetal acceleration of point RE is given in term (b) of the translational
equations of motion as
Aepy = ﬁx(ﬁxfu) (77)
where the components are again assumed to be resolved along the REF axes. Just as in
the case of @, , small angle correction terms in the transformation of the centripetal

acceleration from the REF to the RF are negligible.

The gravity gradient acceleration, resolved along the REF, can be computed from

266.x
' 78)
RE RE/L (
{afe} =[r""hacs.,
aGG.z
where a5, , g6, ,and as;, are the components of the gravity gradient acceleration

resolved along local orbital frame. These components are taken directly from terms (p)

and (q) of the translational equations of motion and are
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As in the case of @y, and 3, correction terms in the transformation of the
components of the gravity gradient acceleration from the REF to the RF are omitted in
the calculation of the inertial acceleration of the rack.

Consistent with the discussion in Section 7.1, the orbital coupling terms between
the orbital motion and the perturbed rack motion (given in (c) of the translational
equations of motion) as well as the gravity gradient acceleration arising from the small
displacement of the rack from its equilibrium position (given in (p) and (q) of the
translational equations) are considered negligible. The inertial acceleration of the rack
relative to the point RE is approximated as

B ~ 457 (80)
The approximation given in Eq. (80) states that the inertially measured acceleration of
rack, relative to the point RE, is approximated by the locally observed, perturbed
acceleration.

Given the assumptions above, the difference between the locally observed
perturbed acceleration of the rack (computed from the equations of motion given in Eq.
(73)) and that pertinent to the inertial acceleration is the simple addition of a group of

quasi-steady acceleration terms that are not functions of the generalized coordinates and
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can be considered predetermined functions of time. Since small-angle correction terms in
the transformation of the quasi-steady accelerations are negligible, knowledge of the
quasi-steady accelerations resolved along the REF is sufficient for this study. The quasi-
steady accelerations are considered constant in magnitude and direction over the time
interval of interest. These accelerations are then added directly to the perturbed

accelerations from Eq. (73) so that the total inertial acceleration can be computed.
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8. SIMULINK Version of the Simulation

The purpose of this chapter is to present the SIMULINK version of the ARIS
simulation and to show the predicted attenuation performance of the ARIS using results
from this simulation. SIMULINK is s:.{tware for use with MATLAB, a mathematics
software package sold by The MathWorks, Inc. (The MathWorks, Inc., SIMULINK Users
Guide, 1992). SIMULINK provides an environment for the modeling of dynamic
systems and controliers. The convenience of SIMULINK derives from its graphical user
interface, which allows the building of simulations using block diagrams in conjunction
with a variety of pull-down menus. These menus also provide the user with a variety of
analytical tools. Additional analysis can be carried out from the MATLAB environment
with MATLAB executable files or directly from the command line.

Section 8.1 shows the implementation of the rigid body equations of motion for
the rack (Eq. (73)) in the SIMULINK environment. Block diagrams from the
SIMULINK simulation are presented that show the simulation architecture and
information flow. In Section 8.2 results from the simulation presented in Section 8.1 are
discussed. These results apply only to the passive system (ARIS controller inactive).
Section 8.3 details the ARIS controller simulation and shows integration of the controller
simulation with the rigid body model presented in Section 8.1. Section 8.4 presents

results for the closed-loop system (ARIS active).
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8.1 Block Diagrams of the Rigid Body Rack Model

The equations of motion given in Eq. (73) are conveniently represented in block
diagram form and shown in Figure 10 and Figure 11. The high-level block diagram of
Figure 10 shows the complete simulation for the rigid body rack. Multiplexer (Mux) and
Demultiplexer (Demux) blocks are utilized to reduce the number of connections needed,
therefore reducing the complexity of the diagram. The bold lines represent the
transmission of vector information. In this case, the bold lines represent the flow of
vector information having six elements, one for each degree of freedom of the rack.
Complexity can be further reduced by the use of superblocks, in which a number of
individual blocks can be grouped together. Examples of these superblocks are the Station

Interface block and the Rigid Rack block.

x-dir
u y-dir
z-dirt .l : l
intemal Disturbance Input x-dir_
+ Demux
-dir 3—
um
L g B r}—f_’ [
Stati

H
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¥-dir E’__|_. Rigid Rack Rack CG Accel
2-dir
N
Theta-x E—l__,.
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Station Accel Input
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o
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-4
&

Theta-z

DC Acceleration

Figure 10: High-Level Block Diagram for Rigid Body Rack Dynamics
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The block diagram of Figure 11 shows the blocks that are part of the Rigid Rack
superblock. Figure 11 is the wiring diagram that carries out the matrix operations on the
left-hand side of Eq. (73). In this figure, a number of statespace blocks are used, and

these blocks all carry the label

x'=Ax +Bu
y=Cx+Du

For the simulation presented in this paper the statespace blocks are used to carry out
matrix multiplication by setting the elements of the A, B, and C matrices to zero and
setting D equal to the matrix that is multiplied by the vector input. In the block labeled
Stiffness, the D matrix is set equal to the aggregate 6x6 stiffness matrix. Therefore the
statespace blocks actually have no states associated with them. The output of the Rigid
Rack superblock is the perturbed acceleration of the rack, measure relative to the REF and
resolved along the rack body-fixed frame. The stiffness, damping and mass parameters
needed to run the simulation are generated in the MATLAR executable file

SIM_BSLN.m, which is presented in Appendix F.
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Figure 11: Sub-Level Diagram of the Rigid Rack Superblock

The Station Interface superblock, shown in the high-level diagram of Figure 10,
converts station accelerations at the station/rack interface into force inputs to the rack.
Upon entering the Station Interface block, the station acceleration signal 1s directed along
two different paths. Along one of the paths the signal is integrated twice to calculate the
station displacement vector and this displacement vector is subsequently multiplied by
the aggregate stiffness matrix to produce a force input. Along the other path the station
acceleration signal is integrated once to compute the local station velocity and this
velocity vector is multiplied with the aggregate damping matrix. These force inputs are

then added together and routed into the Rigid Rack superblock.

8.2 Results for the Passive System

The first results to be presented from the rack model are those for the passive
system response. The passive response is defined as the response of the system to various
inputs when the umbilical assembly is the only connection between the rack and the
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station. The actuators are assumed not to be connected to the rack and the ARIS
controller is therefore rendered inactive. All of the results presented in this section are
those for the baseline heavy rack with a full set of umbilicals. The physical parameters of

this system are given in Appendix B.
Off-Board Disturbance Response

Figures 12 and 13 are transfer functions that show the response of the system due
to acceleration disturbances at the station/rack interface. The transfer functions show the
gain in decibels of the rack acceleration output to the station acceleration input. In
generating the transfer function in Figure 12, the station input is assumed to be an x-

directional acceleration input (in the rack body-fixed frame). This assumption is

equivalent to sett_ing the components of Aés and Aés to zero in Eqgs. (67) and (70).
These equations show that a purely x-direction input at the station/rack interface is also
equivalent to a purely x-direction input at the umbilical connection points on the station.
The output for the transfer function in Figure 12 is the x-direction rack acceleration.
Although the station is assumed to be locally rigid, the environment at the
umbilical connection points is assumed to be the result of structural motion of the station

as well as rigid body motion. The collection of umbilicals are taken as one aggregate
assembly, possessing an aggregate stiffness, with the vector d,, (N=1eatyy POINtINg to the

centroid of the assembly connections. The reason for this is the translational and
torsional stiffness parameters used by the simulation to generate the 6x6 stiffness matrix

are supplied by the ARIS developers as total stiffness quantities for the entire assembly.
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Figure 12 reveals that resonant peaks exist at certain points in the frequency
spectrum at which the off-board acceleration environment is amplified. These resonances
are associated with the rigid body motion of the rack as it oscillates on the umbilical
assembly. The first resonant peak occurs in the vicinity of 0.07 Hz and results in an
amplification of the station environment by a factor of (approximately) thirty. Multiple
resonances occur because the rack is a multi-degree-of-freedom system. If the resonant
behavior of the system is not controlled, the microgravity environment inside the rack
will not meet the microgravity requirement shown in Figure 2. At frequencies lower than
the first resonant frequency a unity transmissibility (zero db) is predicted between the
rack output and station input. Because of sway-space concerns, this is a desirable
response because, if the input and output signals are in phase, the rack motion will track
the station motion and the swayspace will be maintained. At frequencies above the
highest resonant frequency (approximately 0.5 Hz) the gain decreases, at a rate of about
40 db/decade up to 20 Hz, then at a rate of approximately 20 db/decade beyond this point.

This change in slope is due to the damping property of the umbilical assembly.
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Figure 12: Onboard Response to Off-Board Acceleration: x-Direction

Figure 13 is a plot of the rack response due to a combination of translational and
rotational acceleration inputs at the station/rack interface. This combination of inputs has
been chosen to simulate a pure rotational acceleration input at the centroid of the array of
umbilical connections on the station. The simulated rotational input is a unidirectional
rotation about the x axis of the rack body-fixed frame. The plot represents the gain ratio
of the angular acceleration of the rack about the x axis to the angular acceleration of the
station about the x axis. The station disturbance is transmitted to the rack via the
torsional stiffness property of the umbilical assembly. As in Figure 12, resonant peaks
can be seen at certain points in the frequency spectrum. These resonances are associated
with the (rotational) rigid body motion of the rack. At higher frequencies the transfer
function decreases with a slope that becomes shallower with increasing frequency. Just
as in Figure 12, this change in slope is due to the damping property of the umbilical

assembly.
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Figure 13: Onboard Response to Off-Board Acceleration: Theta-x Direction

Onboard Disturbance Response

To illustrate the passive response of the system to an onboard disturbance source,
the onboard forcing function given in Eq. (73) is assumed to be an oscillatory signal
originating from hardware mounted on the microgravity rack. In order to maximize the
torque input, the location of the disturbance source is chosen as the extreme upper comner
of the rack. Figure 14 shows the ratio of the magnitude of the x-direction acceleration of
the center of mass of the rack (the output in units of ft/sec’?) to the magnitude of the x-

direction onboard force (the input in units of Ibf) as a function of forcing frequency.
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Figure 14: Onboard Acceleration Response to Onboard Force

In the low frequency fanges, the presence of the umbilical assembly helps to
isolate the rack from thé accelération effects of the onboard force. Between the frequency
ranges of 0.06 Hz and 0.4 Hz, the system undergoes resonant behavior associated with
the rigid body translation of the rack. The peak amplitude ratio occurs at approximately
0.07 Hz and nearly reaches the 0 db level. At frequencies above 1 Hz, the amplitude of
the rack CM acceleration is a factor of 35 dB less than that of the onboard force
amplitude, corresponding to the inverse of the mass of the baseline rack. Therefore, at

forcing frequencies above approximately 1 Hz the rack behaves as a free body in space.
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8.3 ARIS Baseline Controller Simulation

The ARIS baseline controller simulation presented in this section was constructed
from a number of different sources. For the most part, the latest control law was pieced
together from information presented at the ARIS Critical Design Review (CDR), held at
the Marshall Spaceflight Center, in November, 1996. Other information on the controller
was obtained through communications with the ARIS developers and by reviewing
documents from previous design reviews and Technical Interchange Meetings (TIM’s).
Although the controller design undergoes seemingly continuous changes, the controller
presented in this section is known to be quite current. The controller versions used for
the ARIS Risk Mitigation Experiment (RME) are discussed in Chapter 9 and these
versions differ from the baseline version presented in this chapter. The ARIS controller
is a state-of-the-art control system that employs a combination of acceleration, position,
and stiffness compensation control loops to maintain a microgravity environment inside
of an ISPR. Included in the position control is a non-linear anti-bump algorithm that is
not modeled in the simulation presented in this paper. |

The block diagram for the baseline ARIS controller simulation is shown in Figure
15. The plant model for the rack (the Rigid Rack block) appears in the middle portion of
the diagram and is nearly identical to that presented in Section 8.1 and shown in Figure
10. One exception is that the an extra input path has been added to interface the plant
model with the ARIS controller. Another difference between the passive plant model and
the plant model used in the closed-loop simulation is in the stiffness and damping

matrices. In the closed-loop simulation the effect of the passive actuator stiffness and
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damping must be added to that of the umbilical assembly. For the purpose of this study,
a 6x6 actuator stiffness matrix, computed in a MATRIX-X executable file provided by
the ARIS developers, has been utilized. MATRIX-X is a mathematics software package
that can be used to carry out the matrix calculations needed to generate all of the
parameters used in the ARIS simulation (Integrated Systems Inc., MATRIX-X CORE,
Document Number MDG014-010, 1990). The executable file was converted to
MATLAB format and has been included in the code in Appendix F. Since the time this
code was supplied by The Boeing Company, the geometry of the lower external actuator
pair was changed slightly in the baseline design to eliminate an interference problem.
This change is expected to have minimal effect on the aggregate stiffness and system
performance, but future work should include obtaining the updated stiffness model and
exact geometry of the actuator assembly. As in the case of the umbilical stiffness matrix,
the actuator stiffness is referenced to the rack body-fixed coordinate system and to inputs
at the station/rack interface.

Two separate outputs are taken from the plant model. The upper output is
directed into block Sum. and is the predicted acceleration of the center of mass of the
rack. The acceleration signal is sent through the acceleration feedback loop (uppermost
loop) and operated on by the acceleration compensator. The lower output from the plant
model is a rack position measurement. In block Sum2 the perturbed displacement
between the rack and the station/rack interface is calculated. This relative displacement
information is required by the position control loop (lowest most loop) which maintains

proper swayspace between the rack shell and the wall of the station. The relative position
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measurement is also utilized by the stiffness compensation feedforward loop (middle
loop).

When the computed acceleration of the rack center of mass enters block Sum1, it
is added to the DC (quasi-steady) acceleration signal. As explained earlier, the quasi-
steady acceleration of the rack is considered independent of the rack states and constant
in magnitude over the time interval of interest. The total computed acceleration of the
rack center of mass is then forwarded to block Txtow which computes the accelerations at
the accelerometer head locations. The accelerations measured at the accelerometer
locations are different from those experienced at the center of mass of the rack because
the angular acceleration of the rack induces an additional translational acceleration
component at these locations. |

Just as in the block diagram presented in Figure 11, the controller simulation uses
a number of statespace blocks, of which block Txtow is an example. As described in
Section 8.1, these blocks are used to carry out matrix multiplication and have no states
associated with them. For the most part, the matrix contained in the block in the actual
simulation is the same as the name placed under the block, and these matrices are

generated by the MATLAB code in Appendix F.
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After the acceleration signal is passed through block Txtow, the acceleration
signals (now at the accelerometer head locations) are resolved along the accelerometer
orientations to simulate the measurement of the total acceleration. This procedure is
carried out in block Twrom. The computer code used to calculate the accelerometer
location and geometry parameters was supplied by the ARIS developers. Since the time
at which this code was supplied, a change has occurred in the location of the upper
accelerometer assembly. Furthermore, since the time the code was supplied, an
additional accelerometer has been added to the production ARIS bringing the total
number of accelerometers to nine. Although there seems to be minimal impact to the
system performance, future work should include obtaining the latest code for generating
the accelerometer parameters in light of this design change.

The next block downstream in the acceleration feedback loop represents the
elliptic filter elements. The simulation utilizes a 2™ order filter to simulate the real
elliptic-type filter that is wired into the ARIS controller. The 2™ order filter is a good
approximator of the elliptic filter response up to about 10 Hz, at which point the transfer
function for the approximator diverges from that of the elliptic filter. The baseline ARIS
controller also utilizes an adjustable second order filter that is planned to have a natural
frequency set to 40 Hz when the ARIS is operational on the station. The block simulating
this element appears downstream from the elliptic filter block.

The acceleration compensator operates on the acceleration signal of the rack
center of mass resolved along the rack body-fixed frame so that the accelerations

measured by the accelerometers must be resolved back along this frame. This
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transformation is accomplished in a two-step process. Firstly, in block Tmtox, the eight
accelerometer signals are resolved along the rack center frame, which is a reference
frame with an origin at the geometric center of the rack. In the next step the signal is sent
into block Trctocm in which a small correction is made to the acceleration signal to
transform it from the origin of the rack center frame to the rack center of mass (the origin
of the rack body-fixed frame). In the simulation the Trctocm block contains the 6x6
matrix ctm, which is generated by the code in Appendix F. In the actual ARIS controller
the parameter ctm can be updated from measurements made by the payload evaluator (see
Section 3.2). Since the acceleration at the center of mass of the rack is a quantity of
interest, this signal is forwarded to an outport via a demultiplexer block that separates the
acceleration signal into its various components. The signal is also forwarded to the Gain
block, where the loop gain is set, and then forwarded to the acceleration compensator.

The Acceleration Compensator block consists of six identical cascade
compensators, each of which operates on one of the rack acceleration components. One
set of compensators is shown in Figure 16. The compensator has five other branches (one
for each translational and rotational acceleration component) and they are all identical to
the one shown in Figure 16. The control methodology employed in the acceleration
compensator is single input single output (SISO)-type control.

The output signal from the acceleration compensator block is added to the signal
from the position control loop in block Sum3 and the combined signal is multiplied with
the full 6x6 mass matrix to produce a set of force and torque commands. The signal is
then transformed back to the rack center frame in the block Temtore. The Temtore block

contains the matrix czmi (generated by the code in Appendix F). The force commands are
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then transformed to actuator commands in block Tdelxtou (the parameters of which are
referenced to the rack center frame). Before being forwarded to the plant as a controller
input, the signal is sent through the Actuator Dynamics block. In the current simulation
the ARIS actuators are assumed to be perfect actuators that force the rack in precisely the
manner instructed by the controller. In the actual system this approximation is probably
only valid within a limited frequency range because the actuators are mechanical entities
possessing their own dynamic behavior. The Actuator Dynamics block serves as a
placeholder in the current simulation and contains an 8x8 identity matrix. The actuator
force inputs are sent into the Rigid Rack block where the actuator signals are converted to
force and torque inputs, resolved along the rack body-fixed frame, via the block Turox.
This block is not shown in any of the block diagrams but is generated from the code in

Appendix F.

(0. 1Xs+0.9) 20
(s+0.04)s+0.09) (s+0.628)

Figure 16: One of Six Cascade Compensators from the Acceleration Compensator Block

When the total perturbed displacement between the rack and the station/rack
interface is calculated in block Sum2, the resulting position vector is forwarded to the
block Txtop. This block resolves the relative displacement along the direction of the
actuator pushrods, which are the locations at which the relative position measurements

are made. The signal is then sent through a series of low-pass filters before it is
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transformed to a relative displacement vector resolved along the rack center frame.
Downstream, the difference between the relative position vector and the position
command signal is calculated. At this point the signal is split, and goes to both the
position control block and the stiffness compensation block. The position control block
employs a proportional, integral, derivative (PID) SISO-type control scheme and is
shown in Figure 17. The output from the position controller is then summed with the
acceleration feedback signal in block Sum3 and follows the path, already described

above, into the plant.
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Figure 17: One of Six PID Controllers from the Position Control Block

The stiffness compensator is represented in the Stiffness Compensation block,
which contains pk, a 6x6 matrix. One purpose of the stiffness compensation block is to
instruct the controller to create forces that negate the coupling effects of the umbilical
assembly. Therefore, the off-diagonal elements of pk are set equal to the negative value
of the off-diagonal elements of the actuator and umbilical aggregate stiffness matrix (as
measured by the payload evaluator). The diagonal elements of pk are computed such

that the natural frequency associated with each degree of freedom of the plant is adjusted
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to a predetermined value. The variety of facilities planned for use on ISS will require
various umbilical configurations with varying stiffness properties. The stiffness
compensation loop will help provide for acceptable isolation performance in the face of
changing stiffness parameters. The control inputs from the stiffness compensation loop
are intended to make the rack behave as a decoupled system, all the modes of which are
equal to a predetermined frequency. Since the output from the stiffness compensation is
a force and torque output, the signal is added to the cumulative force and torque signal
from the other control loops and is sent directly to the Tdelxtou block, then forwarded to

the plant as a set of actuator inputs.

8.4 Closed-Loop Results

The results from Section 8.2 show the nature of the problem that exists when the
rack is tethered to the station via a passive umbilical assembly. The rack becomes a six
degree-of-freedom harmonic oscillator that exhibits resonant behavior at certain
frequencies. The results from the ARIS simulation, presented in this section, predict that
the ARIS will successfully counteract the resonant behavior of the passive system.

The results presented in this section serve as examples of the predicted attenuation
performance of the ARIS. The results are presented on a SISO basis, meaning that only
one input/output combination is considered at a time. However, taken as a collective, the
SISO results can provide a good understanding of the ability of the ARIS to attenuate
various classes of disturbances. The plant model used in generating all plots is the
baseline heavy ISPR with a full complement of umbilicals. The equations of motion used

in the plant model are taken from Eq. (73) and, as mentioned before, the plant model used
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in the closed-loop simulation is very similar to that presented in Section 8.1. The
presentation of results begins with the response of the system to off-board disturbances (a
class of disturbances against which the ARIS was specifically designed to isolate) and
concludes with the response of the system to onboard disturbances.
Off-board Disturbance Attenuation

Figure 18 shows the transfer function between off-board translational
accelerations (the inputs) in the rack’s body-fixed x, Y, and z directions and the x-
direction acceleration of the rack CM (the output). Figure 19 shows the phase angle
between the off-board acceleration inputs and the rack CM acceleration. The off-board
station disturbance inputs are pure translational accelerations at the station/rack interface.
According to the transformations given in Eqs. (67) and (70), pure translational inputs at
the station/rack interface transform as pure translational inputs at the umbilical and
actuator connection points on the off-board side. In Figures 18 and 19 the system
performance prediction is shown between the frequencies of 0.001 Hz and 10 Hz.
Although outside of the vibratory frequency range, the response of the system at
frequencies below 0.01 Hz is shown to illustrate the ability of the ARIS to track station
motion in the very low frequency range. Since the second order filter used to
approximate the ARIS elliptic filter is a good approximator only up to 10 Hz, the ARIS
simulation predictions cannot be considered reliable at frequencies higher than this.

At frequencies below 0.01 Hz a transmissibility ratio of approximately one (zero
db) 1s maintained between the local off-board x-direction acceleration and the x-direction
acceleration of the rack center of mass. Furthermore, the phase angle between the off-

board x-direction input and the onboard x-direction acceleration is approximately zero
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degrees at frequencies below 0.003 Hz. This unity gain and zero phase angle is necessary
to maintain the sway space between the rack and the station. Low frequency oscillations
result in large relative displacements that could cause bumping between the station and
the rack. It should also be noted that the resonant peaks that were characteristic of the
passive system (Figure 12) have been eliminated by the ARIS, so that the acceleration
enviroﬁment inside the rack would now satisfy the microgravity requirement, given the

predicted ISS environment shown in Figure 3.
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Figure 18: Transfer function between local off-board translational accelerations (inputs),
along orthogonal directions, and x-direction acceleration of the rack CM

(output).
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Figure 19: Phase angle between local off-board translational accelerations (inputs), along

orthogonal directions, and x-direction acceleration of the rack CM (output).
Also noticeable from Figure 18 is that the coupling between off-board

accelerations in the body-fixed y and z directions and the rack CM acceleration in the x-
direction is very small in the portion of the frequency spectrum shown. Although
coupling mechanisms do exist in the physical system, the ARIS controller minimizes the
coupling effects through stiffness compensation. Although Figure 19 shows that the off-
board y- and z-direction signals are out of phase with those of the rack x-direction
acceleration at most frequencies, the minimal coupling effect and the fact that the inputs
are orthogonal to the output means that there is less concern of bumping than with the x-
direction off-board input. However, the chances of bumping between the rack and the

station are also dependent on the severity of the off-board acceleration environment in a

given direction.
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The inclusion of the Coriolis coefficients in the equations of motion can have a
large impact on the shape of the transfer functions for the y- and z-direction inputs. As a
conservative estimate of the effects of the Coriolis acceleration, the components of the
orbit rate resolved along the REF were all assumed to have a value of 1.1x107 rad/sec,
which is the maximum value of the orbit rate along the y axis of the LVLH frame. The
resulting Coriolis coefficients were then put into the simulation for comparison to the
simulation results when the Coriolis effect was not included. The differences seen for the
transfer function associated with an x-direction input are negligible because the diagonal
terms in the translational damping matrix are dominant in comparison to the Coriolis
coefficients. However, the differences for the y-direction and z-direction inputs (x-
direction output) differ greatly from the results shown in Figure 17. In the frequency
range of 0.001 Hz to 10 Hz, the gain is increased by as much as 40 db when the Coriolis
coefficients are included. However, the gain was never more than -80 db for the y- and z-
direction inputs. The phase comparison shows negligible differences for the x-direction
input result shown in Figure 18. However, the phase plots for the y- and z-direction
inputs are different by as much as 145 degrees from the results shown in Figure 18.
Based on these preliminary studies, it is important to be aware of the Coriolis effect if an
in-depth study into coupling, with regard to ARIS performance, is to be carried out.

Although there are nine possible combinations of orthogonal off-board
translational acceleration inputs and orthogonal translational accelerations of the rack
CM, only three of these combinations are presented. Using the simulation, transfer

functions and phase plots between the orthogonal off-board translational acceleration

115



inputs and the y- and z-direction rack CM accelerations have been generated. These
results have similar characteristics to those shown in F igures 18 and 19.

Figure 20 shows the transfer function between angular accelerations at the
station/rack interface about the orthogonal directions of the rack’s body-fixed frame and
the x-direction acceleration of the rack CM. Figure 21 shows the phase angles between
this set of inputs and the output. According to Egs. (67) and (70), rotational inputs at the
station/rack interface transform into a combination of translational and rotational inputs at
the various umbilical and actuator connection points. Since the station/rack interface is
nearly coincident with the position of the rack CM, rotation of the station about the rack
body-fixed x and y directions takes advantage of the z-direction moment arm, so that
these rotations produce the largest translational inputs at the umbilical and actuator
connection points on the station. For this reason, the coupling between the theta-y input

and the x-direction output is the most significant.
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Figure 20: Transfer function between local off-board rotational accelerations (inputs with
units rad/sec?), about orthogonal directions, and the x-direction acceleration

of the rack CM (output with units f/sec?).
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Figure 21: Phase angle between local off-board rotational accelerations (inputs with units
rad/sec?), about orthogonal directions, and the x-direction acceleration of the

rack CM (output with units ft/sec’).
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Onboard Disturbance Attenuation

Figure 22 shows the ratio of the magnitude of the x-direction rack CM
acceleration to the magnitude of the onboard disturbance forces (in the orthogonal body-
fixed directions) as a function of frequency. Just as in the case for the passive system, the
onboard disturber is located in the upper corner of the ISPR, a location that maximizes
the torque input to the rack. Consideration of the response of the system to an x-direction
force input, and comparison of Figure 22 to Figure 14 shows that the resonant peaks
characteristic of the result for the passive system have been eliminated by the ARIS
controller. At a frequency of about 10 Hz, the transfer function levels out to an
attenuation of approximately -35 db, which is the decibel equivalent of the inverse of the
rack mass. Therefore, with onboard forcing frequencies in the neighborhood of 10 Hz,
the rack responds like a body floating in free space. Figure 22 also shows that the x-
direction acceleration of the rack CM is highly decoupled from force inputs in the body-y
and body-z directions. The result shown in Figure 22 also typifies the acceleration
response of the system in the y and z directions. Although the results are not shown in
this paper, the y-direction (z-direction) rack CM acceleration is highly decoupled from

force inputs in the x and z (x and y) directions.
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Figure 22: Transfer function between onboard disturber force in orthogonal directions
(inputs with units of Ibf) and x-direction rack CM acceleration (output with
units of ft/sec?)
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9. ARIS Risk Mitigation Experiment

The ARIS Risk Mitigation Experiment (RME) was a flight test of the ARIS
carried out during shuttle mission STS-79. The purpose of the RME was to test the
functionality of the ARIS with respect to on-orbit operations and performance. A myriad
of tests were carried out during the flight and a portion of the data collected during these
tests may prove valuable in verifying the results of the ARIS simulation presented in this
paper. Therefore, one of the objectives of this research is to simulate the unique ARIS
configuration used during the RME so that comparisons between simulation results and
test data may be carried out.

The ARIS configuration used during RME differed significantly from the baseline
configurations planned for ISS. The most significant differences are as follows:

® The mass of the ISPR was significantly different than that of the various baseline
configurations.

® The umbilical assembly was changed during the experiment from a partial umbilical
configuration to a minimum umbilical configuration that possesses considerably less
translational stiffness.

* The ARIS control laws used during RME were different than the baseline controller
planned for use on ISS.

® Asaresult of anomalous behavior of the ARIS during the RME, one of the eight
actuator pushrods was damaged and had to be removed. The ARIS operated with
seven pushrods during most of the testing.

The various configuration changes summarized above must be programmed into the

simulation if the RME results are to be compared to the results from the ARIS simulation.

A listing of the RME configuration parameters is given in Appendix B.
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9.1 Verification of the ARIS RME Configuration

Information on the ARIS RME configuration was collected from a number of
different sources including various RME written reports (cited parenthetically below) as
well as discussions with the ARIS developers and information presented at the latest
ARIS CDR (Marshall Spaceflight Center, November, 1996). Given that the ARIS RME
simulation was patched together from these various sources, it was considered prudent to
atternpt to validate the RME simulation architecture to ensure that the correct controller
configuration and plant parameters were being used. The validation was carried out
through comparison of the results from the current simulation to the results from the
ARIS simulation being used by the Boeing Defense and Space Group. The ARIS
developers operate this simulation independently, using it to make predictions of system
performance for the RME and baseline ARIS configurations.

Several different controller versions were used during the RME and two of these
versions are presented in this paper. One type is termed a baseline robust controller that
utilizes a 2™ order 8 Hz filter in the acceleration feedback loop in addition to the baseline
acceleration compensator. Also present in this configuration is an 8® order elliptic filter
set at 250 Hz. The second controller type is termed a high gain controller in which the
gain in the acceleration feedback loop is doubled, the 2* order filter is set at 40 Hz, and
the 8® order elliptic filter is set at 25 Hz. Further, the high gain controller employs an
additional lag filter in the acceleration feedback loop.

Figure 23 shows the comparison of the current simulation results to those of the

Boeing simulation. The plot shows the predictions for the ARIS RME off-board
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attenuation capability as a function of frequency. The gain depicted in the plot is the ratio
(in decibels) of the x-direction acceleration of the rack center of mass to the off-board x-
direction acceleration at the station/rack interface. This comparison shows that the
current simulation is in acceptable agreement with the Boeing simulation and thus the

current simulation probably employs the most up-to-date models of the RME controllers

J

for both the high gain and baseline versions.
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Figure 23: Comparison of current simulation results (left) to Boeing simulation results
(right) of ARIS RME off-board attenuation capability. Solid lines are baseline
robust controller predictions and dashed lines are high gain controller
predictions.

9.2 Comparison to RME Results

The comparison of simulation results to the results obtained from the RME are
currently limited to a small subset of the total data received from the experiment. For the
purpose of comparison here, the preprocessed data given in the final RME report were
utilized (Boeing Document #SK683-61855-1, STS-79 Final Report RME-1313/ARIS,

December, 1996). Among a number of other results, the final RME report presented

single input single output (SISO) attenuation results from two different isolation tests.
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The SISO approach considers only one input/output combination at a time and assumes
that the only input that affects a given output is an input in the same direction as that
output. For example, it is assumed that the x-direction acceleration of the rack is affected
only by an x-direction acceleration onboard the station. Therefore all cross-coupling
between the six degrees of freedom is ignored. In reality this assumption is not strictly
valid but it does provide for a first-look comparison of results.

The results presented are those from an isolation test run that was carried out on
day 5 of the STS-79 mission. The batch file used for the test run was designated
B1G_B2.X. Further information on this test is documented in the RME Quick Look
Report (Boeing Document #SK683-62235, ARIS RME-1313 Quick Look Report, October,
1996) and the final RME report. The test was conducted with the high gain controller
configuration active, a minimum umbilical assembly, and the #8 actuator removed.
Furthermore, during this test run the ISPR was fully loaded with food logistics for MIR.
All of these conditions have been simulated for comparison to the test results.

Figures 24, 25, and 26 show comparisons between the predicted attenuation levels
of off-board disturbances and the isolation levels measured during the RME. Because the
isolation results were presented in the final RME report as average isolation levels across
1/3 octave band intervals, the predicted isolation levels from the current simulation have
been averaged over the same 1/3 octave bands. The average predicted attenuation levels
are plotted at the center frequencies of the various 1/3 octaves so that direct comparisons
between the prediction and the flight data can be made for each interval.

Valid isolation data from the RME were limited to a certain bandwidth because

the acceleration environment present on the Space Shuttle during STS-79 was below the
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noise floor of the accelerometers in portions of the frequency spectrum. The region of the
spectrum in which the data are believed to be valid is taken to be the same for all three

directions, and ranges from approximately 0.04 Hz to 1.2 Hz. No comparisons were

made outside of this bandwidth.
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Figure 24: Comparison of current simulation x-direction SISO isolation prediction
(asterisk) to RME x-direction SISO isolation results (open symbol):
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Figure 25: Comparison of current simulation y-direction SISO isolation prediction
(asterisk) to RME y-Direction SISO isolation results (open symbol).
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Figure 26: Comparison of current simulation z-direction SISO isolation prediction
(asterisk) to RME z-direction SISO isolation results (open symbol).
The x- and y-direction SISO predictions follow the trend of the flight data, but the
prediction and results diverge more and more with increasing frequency. Further, the z-

direction isolation during RME was not as good as that in the x and y directions and the
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simulation over-predicts the isolation by a considerable amount. For the case of the x-
and y-direction plots, some of the differences between the flight data and the prediction
are attributed to coupling from station inputs in other directions. This coupling effect can
be shown to become stronger with increasing frequency. The large differences between
the z-direction isolation levels measured during the RME and the z-direction isolation
predictions of the current simulation are not fully understood. In 2 communication from
The Boeing Company, it was suggested that the large differences may be accounted for
by the variation in stiffness of the umbilicals throughout their range of motion. The
effective stiffness of the umbilicals in small amplitude motion is larger than that
associated with large amplitude motion, and this behavior is not accounted for in the
current simulation.

Further details on ARIS test results are given in Reference 11. This is also an
excellent reference for details on ARIS design studies, control methodology and hardware
configuration. The reference was authored by the ARIS developers from the Boeing

Defense and Space Group.
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10. Concluding Remarks

This paper details the development of a simulation capability for a microgravity
rack integrated with an ARIS kit. The current simulation is based on a Boeing simulation
capability for the ARIS. The computer-based model presented in this paper represents an
important first step in building a simulation tool, at the NASA Langley Research Center,
that may be utilized to augment technical knowledge of the ARIS and to make
attenuation performance predictions for various microgravity facility configurations. In
the hands of payload developers and microgravity scientists, this combination of
technical knowledge and quantitative predictions may lead to a higher level of science
return from the International Space Station.

The research documented in this paper is highly comprehensive in that it details
the effect of the orbital motion on the microgravity environment inside the rack while
also confronting the dynamics resulting from the umbilical and actuator assemblies,
disturbance sources internal to the rack, and the station environment at the station/rack
interface. Starting with a basic description of the Space Station and ISPR in orbit, an
energy-based method is applied to derive rigid-body equations of motion. By eliminating
second-order terms in the orbital equations of motion for the center of mass of the
composite system, it is found that the well known equations of motion for the two-body
problem can be realized. A forcing function appears on the right-hand side of these
equations due to external forces that are acting on the system. Based on this familiar
result, the orbital parameters of the system are considered known functions of time,

eliminating the need to integrate the orbital equations of motion. Furthermore, the
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external forces acting on the system are assumed to be constant in magnitude and
direction over the time interval of interest.

For the purpose of this study, the perturbed motion of station is assumed to be
predetermined because of the large mass ratio between the station and the rack. Using a
suitable set of generalized coordinates and the proper transformations, the perturbed
equations of motion for the microgravity rack are derived and the rack states used in these
equations are those measured by an observer fixed with respect to the system orbit.
Numerous terms are derived in the perturbed equations of motion, and many of these
represent orbitally-induced forces on the rack. This paper identifies, and describes in
detail, the various forces and torques acting on the microgravity rack. Furthermore, order
of magnitude studies are used to identify those terms that may have a significant impact
on the microgravity environment inside the rack. For the most part, the coupling terms
between the bulk orbital motion of the system and the perturbed motion of the rack are
shown to be negligible on the microgravity scale. However, these terms could be
significant in the study of coupling effects between the various perturbed rack states.

The derivations presented in this paper are significant in that they establish a firm
understanding of the dynamical behavior of the rack in the context of its orbital motion
and its locally observed perturbed motion. If coupling terms between the orbital motion
and the local perturbed motion of the rack are omitted (and a quasi-equilibrium condition
is employed) then the locally observed motion is approximated by equations of motion
representing the equivalent inertial-based system. Significant quasi-steady, orbital-
induced accelerations are then added to the local perturbed acceleration to calculate the

total inertial acceleration of the rack.
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Using the equations of motion derived for the microgravity rack, a computer-
based simulation was developed in the SIMULINK environment. This environment
allowed the ARIS controller simulation to be interfaced easily with the rack model so that
a simulation of the entire closed-loop system could be constructed. With the ARIS
disconnected, the predicted response of the rack to both onboard and off-board
disturbances showed resonant behavior at various frequencies. This behavior will result
in noncompliance of the rack environment with the microgravity requirement. When the
ARIS is activated the simulation results predict that the resonant behavior is eliminated,
and a microgravity environment is maintained inside of the rack.

A limited comparison is made between simulation performance predictions and
performance results from the ARIS RME. For the sake of comparison the assumption is
made that the translational acceleration of the microgravity rack in a certain direction is
affected only by off-board inputs in the same direction. The x- and y-direction
attenuation predictions are more in agreement with the flight data than that of the z-

direction and all comparisons show that further tuning of the current model is necessary.
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APPENDIX A

A.1 Overview of Indicial Notation

Indicial notation is a bookkeeping tool for use in vector algebra. The principles
given on indicial notation in this appendix lay the groundwork for indicial notation as it
applies to this paper. For further information regarding indicial notation see reference 12.

1) If the quantity known as “vector a” is symbolized as 3 and the quantity known as
“vector b” is symbolized as b, then:

* The notation 2, (i=1,2,3) denotes the i component of 3 and b; denotes the i

component of b.

e If the same indicial symbol appears twice in the same term, it is referred to as a
dummy index and a summation across this index is implied. Therefore, the dot

product of @ and b is given indicially as: 3.b = a, b,
* The indicial symbol € 1s introduced as a permutation symbol that takes the value of

+1 if the indices ijk are in cyclic order, -1 if they are in acyclic order, and zero if any
two of the three indices ijk are equal. The vector cross product can be represented

indicially as: ix b = €ia;by
2) If the quantity known as “second order tensor A” is symbolized as ; , then:

e The tensor .i may be written down as a 3x3 matrix.

* Thenotation A; denotes the i*, j* component of A , representing the element in the

i" row and j® column of the matrix representation for A .

¢ A second order tensor is symmetric if Ay =A;.
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* A second order tensor is antisymmetric if A; =0 and A; =-A .

e For this study, the vector of an antisymmetric tensor B is defined as a vector with

1
components v, (k=1,2,3),and v, = 5 € B

e For this study, the antisymmetric second order tensor of v is givenas B; =g, v,.
Therefore, if

v, _ 0 -v, v,
V=9v,¢,then B=| v, 0 -v
v, -v, Vv 0

The last two definitions provided above differ from those given in reference 12. In that
reference the definition of the components of Vv, the vector of an antisymmetric tensor,
are of opposite sign than that given above. For this study the definitions provided in this
appendix are used because they are better suited to represent the cross-product operation,

which is present in many of the developments presented in this paper.
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A.2 Final Indicial Form of the Lagrangian and the Dissipation Function

L=

O N | RO ey Fuy +art,|

5 T ey (e 8 ) gy i + +e, a12 )|
[+ I8, e 802, + 5 B0 AR ) e Ok, + 2, +a, + 12 e, 00 11 )]

+Q,0, (1, ~1,)80,. +0,0,(1,. -1,.)ae,.

+0,0,(1,. -1, )ae,.

L (S oLy ~1,.)ae? +%(Q§, - Q2 )1, -1, )a2

1
2
1 2 2 2

+5(Qx. -2 )1, - 1. JaeZ

+0,0,(1, -1,.)46,.06,. + 0,0, (I,. ~1,.)46,.40,,
+0,0,(1,. ~1,.)a0,.46,.
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+Q.1,.A6,.48,. -Q 1,.A6,.A6,.
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1
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APPENDIX B

Summary of System Parameters
Baseline Heavy Rack
Estimated Mass: Mg = 54.9 slugs (1768 lbm)

Estimated Moment of Inertia Matrix (slug-ft%):

18300 0 012
[1R]=] o 19499 -715
012 -715 8127

Estimated Translational Umbilical Stiffness (Ibf/ft) (no coupling predicted):

864 0 0
[KTrnEg]=| 0 1044 0
0 0 1044

Estimated Torsional Umbilical Stiffness (Ibf-ft/rad) (no coupling predicted):

5317 0 0
[KToRRG]=| 0 10927 o
0o 0 786

RME Rack
Mass (measured on orbit with full load of logistics): My = 27.6 slugs (888.72 Ibm)

Measured Moment of Inertia Matrix (slug-ft®):

1130 27 20
[1R]=| 27 123 57
20 57 47
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Translational Umbilical Stiffness (on-orbit measurement) (Ibf/ft):

600 36 26
[kTenB]=| 0 472 0
26 0 443

Torsional Umbilical Stiffness (estimated from on-orbit measurement) (1bf-ft/rad):

1453 -257 -122
[KTORR | =| —46 2692 404
-151 -373 499
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APPENDIX C
A Model for Rotating Equipment Disturbance
The majority of the oscillatory disturbances onboard the rack are due to the
operation of rotating equipment. The force and torque inputs to the rack are due to mass
imbalances in the machinery that result in a time rate of change of the linear and angular
momentum vector associated with the rotating motion. Figure C-1 shows the diagram

used in developing the model for this class of disturbance.

lj / \ n qMounting Bolts

RACK

Figure C-1: Diagram of the Rotating Mass Imbalance Model

The model assumes that the total rotating mass imbalance is represented by the
point mass m, , which rotates about an axis through point O. An axis system is assigned
so that the axes &, and &, lie in the plane of rotation while the axis £, is normal to the

plane of rotation and parallel to the angular velocity vector & . The equipment is
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assumned to be hard-mounted to the rack and the axes &,, &,, and &, are assumed fixed

relative to the rack body-fixed frame.
The total acceleration of the disturber mass relative to the rack center of mass is

2 =% 4/ xE = ol 7 C-1
am’-ao+axrp,o+mx(coxr,,,o) (C-1

where & is the angular acceleration vector of the rotating mass about £, and d,1s the
acceleration of point O relative to the rack center of mass. The rotating equipment is
assumed to be operating in a steady-state condition so that & = 0. Furthermore, the
relative acceleration @, is considered small compared to the centripetal acceleration term.
Therefore, the only term retained is the centripetal acceleration term.

With respect to any rack body-fixed axis, the force input due to rotating

imbalances is oscillatory, with a frequency of f = % Hz. If the magnitude of the

position vector T, is designated as e, the maximum possible amplitude of the force

input along any body-fixed axis is

(C-2)

mP,?PRIMAx = m,da|’
In a document produced under contract for the Space Station program it is suggested that
the disturber mass m, be assigned a value of 0.5% of the total mass of the rotating part
and the imbalance radius, e, be given as 0.5% of the radius of the rotating part (Boeing
Missiles and Space Division and NASA, Boeing Document #D683-28702-1,

Microgravity Disturbance Forcing Functions Issue A, 1996). As a final note, the vector
It} is the same as that represented by the column vector {r,lz } given on the right hand

side of Eq. (73).
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APPENDIX D

Approximation for Umbilical and Actuator Damping
The damping matrices given in Eq. (73) pose a problem from a practical
standpoint because of the difficulty of making approximations for these quantities. As a
first approximation, information on the damping quantity supplied by the ARIS
developers is utilized. The only information provided thus far is the value of C;, the

modal damping coefficient associated with the j® mode. To utilize this information, an
algebraic expression for the modal form of the equations must be derived so that the
physical damping quantity can then be backed out of the modal information provided.
Many of the developments in this appendix are informed by reference 13.

The general form of Eq. (73) can be interpreted as the equations of motion for a
damped harmonic oscillator subjected to base motion excitation as well as directly

applied disturbing forces. The condensed form of the equations for this system is
[MJ{5} +[Cl{x} + [K){x} =[CH{5) + K]y} + {Farsson } ®-)

where the column vector {x} and its time derivatives are rack states and {y} and its time

derivative are station states.
The modal development begins with a consideration of the natural, undamped
equations of motion, given as
[M){x} +[KI{x} = {0} (D-2)

A linear transformation of the form
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{x} =[z}{q} (D-3)
is substituted into Eq. (D-2), which is then rewritten as
{a} + (2" MI"[K][Z]{q} = {0} D-4)
If the columns of [Z)] are assumed tc; be the eigenvectors of the matrix product
[M]™'[K], then the eigenvalue problem of the following form is realized,
det ([K] -4, [M]) = {0} @-5)
where A | is the eigenvalue associated with the j* eigenvector (j ® column of [Z]).

The orthogonality relation for the natural modes implies that the mass matrix can

be diagonalized with the j* eigenvector in the following fashion

{z,} IMlfz.} =0 ®-6)
and

{z,} Ml{z,} = m, ®

For convenience the eigenvectors are normalized as

{4’:'} = {Zj} (D-8)

where ¢; is the j® column of a normalized eigenvector matrix [¢] )
For the purpose of this study, it is assumed that the modal matrix diagonalizes the

damping matrix as well, so that

[6]7[C[¢] = diagl2¢,0 j] (D-9)
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The ARIS developers assigned the damping factors a value of 0.015 for all modes. This
is the value currently used in the simulation presented in this paper and the damping

matrix is calculated in physiéal coordinates using

[€1=([o]')” diagl2t,0 [ (D-10)

Eq. (D-10) has certain implications regarding the form of the physical damping
matrix. If an aggregate 6x6 stiffness matrix, incorporating translational and torsional
stiffness elements, is used to generate the eigenvalues and eigenvectors then the physical
damping matrix realized through Eq. (D-10) is not of the same form as that given in Eq.
(73). The reason for this is that although the torsional stiffness quantity is confined to the
lower right-hand minor of the aggregate stiffness matrix, it effects all of the eigenvalues
and eigenvectors obtained from the eigenvalue problem in Eq. (D-5). Therefore, all of
the terms in the physical damping matrix are affected when the physical damping is
approximated using Eq. (D-10). Although the validity of the assumption in Eq. (D-9)
(and therefore Eq. (D-10)) is in question no matter which form of the stiffness matrix is
used, it was decided to approximate damping using the eigenvalues and eigenvectors
from the undamped, unforced system incorporating the aggregate 6x6 stiffness matrix,
which is the summation of all actuator and umbilical stiffnesses, both translational and
torsional.

To maintain the same form of the 6x6 damping matrix given in Eq. (73),a
different approach is needed. In this approach, 2N equations of the form given in Eq. (D-
2) would be written. In each equation, the stiffness matrix would be different, and

represent the stiffness for one of the N elastic elements. For each elastic element, there
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would be two equations - one incorporating a 6x6 stiffness matrix for the translational
stiffness and one incorporating the torsional stiffness. Damping matrices would be
generated for each element individually using eigenvalues and eigenvectors unique to that
particular element. The 2N physical damping matrices generated through Eq. (D-10)
would then be added together to from an aggregate damping matrix for all of the
elements. Although this approach may be more intuitive, the validity of this

approximation over that described in the last paragraph is questionable.
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APPENDIX E

Transfer Functions of the ARIS Control Elements

Many of the control elements presented in the ARIS block diagram in Figure 15
are represented by superblocks, in which a number of individual blocks are grouped
together. In the case of such control elements as the Acceleration Compensator or the 40
Hz Second Order Filter the superblocks consist of an array of compensators. In the
Acceleration Compensator block there are six identical cascade compensator branches
(paths) and each of these operates on one of the translational or rotational acceleration
signals. The 40 Hz Second Order Filter block consists of eight identical compensator
branches, one for each of the eight accelerometer signals. In the following listing, the
transfer functions found in each of the ARIS controller elements, for the baseline
production and RME versions, are presented. The block name is given along with the
number of control branches and the block-diagram form of the transfer functions within
the control element. In every case, the compensator for each branch or path in the given

control element is identical.
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Table E-1: Simulation Blocks for Baseline Production ARIS Controller Elements

Name of Block

2nd Order Approx. for
Elliptic Filter
(This approximating filter
was supplied by Boeing
Product Group 3 (PG-3).)

40 Hz 212 Order

Acceleration Compensator

Position Analog Filters

Position Filters

Position Control

Number Transfer Function and Configuration
of (All Branches Identical)
Branches
) 304784 )
8 s2+11315+304784 <
8 63187 B
“ s2+3555+63167 N
(s+0.1)(s+0.4) 20
6 {s+0.04)(s+0.04) (s+0.628)
8 ) 100 100 100
) s+100 a s+100 s+100 <
) 100 )
6 100 [¢

00334
{5+0.0628){s+0.0628) | . ‘

Zero-Pole C%e:fgc(:]%%ts

D=6

Coefficients:
P=

I=0.018
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The ARIS controllers employed during the RME differed from the baseline
production controller shown above in several respects. With regard to the controller
elements considered in this appendix, the baseline robust controller used during the RME
utilized an 8 Hz second order filter in place of the 40 Hz second order filter used in the
baseline production controller. Furthermore, the baseline robust controiler utilized a 250
Hz elliptic filter instead of the 25 Hz elliptic filter used in the production version. With
regard to the controller elements presented in this appendix, the RME high gain
controller differs from the ARIS production controller in that it incorporates an additional
lag filter in the acceleration feedback loop, downstream of the acceleration compensation.
Furthermore, the acceleration feedback loop gain is double the gain in the baseline
production version. Instead of using a second order filter to approximate the elliptic
filter elements, as is done in the simulation presented in Section 8.3, the RME
simulations use the full 8 order transfer functions to simulate the elliptic controller
elements. All of the RME controller element variations described here are presented
below. With the exception of controller element variations described here, the RME
controllers are assumed to utilize controller elements identical to those presented for the

baseline production controller given above.
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Table E-2: RME Baseline Robust Controller Variations

Name of Block Number
of
Branches

8 Hz Second Order 8

250 Hz Elliptic 8

Transfer Function and Configuration
(All Branches Identical)

2524

s2+715+2524

sH50568

402568

RV

s43005+1.2568

¢

214342 2368

s+405¢27108

Table E-3: RME High Gain Controller Variations

Name of Block Number

of
Branches
Analog Filter 2 8
(Lag Filter)
25 Hz Elliptic 8

Transfer Function and Configuration
(All Branches Identical)

$2+15.725+88.74

2%
( szon:::ua

52+10.04s+39 .94 <
s424881 s227307 482000
SUQTUNZT] | | s240875+20405 DBG295+24647
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APPENDIX F

MATLAB Code for Generating Simulation Parameters
The MATLAB code given in this appendix is mainly composed of several
different executable files received from The Boeing Company in October, 1995. Since
the time at which this code was supplied, several ARIS design changes have taken place.
Therefore, the code should be considered applicable to the baseline design from late 1995
and must be corrected or modified in order to simulate specific ARIS racks currently

planned for use on the Space Station.
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% THIS PROGRAM GENERATES PARAMETERS FOR USE IN THE ARIS SIMULATION

96&‘*‘**************#**t*tt*t‘t*#*ttt#t#**t#t*ttttttt*#*#*t#t*‘*t“#*t###‘tt#‘ttttt*tt

% RACK BASELINE MASS PROPERTIES

gétttt*****tttt***‘#‘#t**t##t**##tttt##‘t*tt**t#*t3***#t#t*ttttt##"ttt#t*##t#*‘tt**tt

% MASS (SLUGS)

MR=54.916;

% MOMENT OF INERTIA (SLUG-FT*2)

IR=[183, -0.0076831, 0.11565;
-0.0076831, 194.99, -7.1478;
0.11565, -7.1478, 81.279];

% AGGREGATE MASS MATRIX

massmat=zeros(6);
massmat(1:3,1:3)=[MR.0,0;0,MR,0;0,0,MR];
massmat(1:3,4:6)=zeros(3);
massmat(4:6,1:3)=zeros(3);
massmat(4:6,4:6)=IR;

invmass=inv(massmat);

96****#***‘ttt#***tt*&tt*t*#*t*‘***#t***t**t#*#t#******t.##**ttt*l*t*#tt***t**tt*#ttt#

% BASELINE UMBILICAL STIFFNESS PROPERTIES
% (No Translational Coupling Predicted)

96#‘#*#3***#***#*******tt*t*tt**#*l#“**t**#t**#**t*tt*#***ttttt#t*#*##*#*t#‘tttt*t**#

kx=86.4;

ky=104.4;

kz=104 4,

lxy=0;

kxz=0;

kyz=0;

%POSITION VECTOR OF THE CENTROID OF THE UMBILICAL CONNECTION, MEASURED
%RELATIVE TO THE CENTER OF MASS OF THE RACK, IN RACK EQUILIBRIUM
%COORDINATES (FT)

dvect=[-0.363, -0.342, -2.42];

% SECOND ORDER TENSOR ASSOCIATED WITH dvect

dtens={0 -dvect(3) dvect(2); dvect(3) 0 -dvect(1); -dvect(2) dvect(1) 0];
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% CONSTRUCT 3X3 (UPPER LEFT) MINOR OF THE STIFFNESS MATRIX

Ktr=zeros(3);
Ktr(1,1)=kx;
Ku(2,2)=ky;
Ktr(3,3)=kz;

% TORSIONAL STIFFNESS (CALCULATED FROM BOEING-SUPPLIED INFORMATION)

Ktor=zeros(3);
Ktor(1,1)=53.17;
Ktor(2,2)=109.27;
Ktor(3,3)=78.56;

% CONSTRUCT 6X6 STIFFNESS MATRIX

Kumb=zeros(6);

Kumb(1:3,1:3)=Ktr;
Kumb(1:3,4:6)=Ktr*dtens’;
Kumb(4:6,1:3)=dtens*K1r;
Kumb(4:6,4:6)=dtens'*K tr*dtens+K tor;

96‘&“‘*‘#****#*‘*****#tt***#‘*‘**#*i*###t***#****t*t**#*t#*t**t#**t****t#t*#tt‘t*tt**

% EIGENVALUES AND EIGENVECTORS OF SYSTEM WITH UMBILICALS ONLY
% AND
% APPROXIMATION OF PHYSICAL DAMPING MATRIX FOR UMBILICALS

96**#****“**8**##tt‘t#****t**t*****t*t#*#*#*t****t*#*t#**#***#*tt#t#tttt*#‘*t*#*tt***

[Vumb,Dumb]=eig(invmass*Kumb);
%NORMALIZED EIGENVECTORS

massdiag=zeros(6);
massdiag=Vumb'*massmat*Vumb;

for i=1:6
phi_umb(:,i)}=Vumby(:,i)/(massdiag(i,i))"0.5;

end

%APPROXIMATION FOR UMBILICAL DAMPING IN PHYSICAL COORDINATES
Cumb=inv(phi_umb')*2*0.015*Dumb.”0.5*inv(phi_umb);

% Check on umbilical damping geometry

Cumbc=zeros(6);

Ctr=Cumb(1:3,1:3);

Cumbe(1:3,1:3)=Cr;

Cumbc(1:3,4:6)=Ctr*dtens";
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Cumbc(4:6,1:3)=dtens*Ctr;
Cumbc(4:6,4:6)=dtens'*Ctr*dtens;

96‘&3#*****&*#**8*#*t**'#tt*#******#*‘t*#***ttt‘#*‘t#*#**ttt‘tt#‘tt“t*t#**tt*#t###ttt

% ACCELEROMETER GEOMETRY
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96**##***#*****t*ttt****#*tttt##‘t#*tt**‘t***8‘**tt‘**#*****tt*t‘t#t**ttt#**#tttt‘**#t

Y%clear msv

centocg=[0,0,0];

rhead1=[-17.7 14.1 27.9]-centocg;
rhead2=[-17.7 11.2 -31.5}-centocg;
rhead3=[17.7 11.2 -31.5]-centocg;
raccl=(rhead1)/12;
racc2=(rheadl)/12;
racc3=(rthead2)/12;
racc4=(rhead2)/12;
racc5=(rhead2)/12;
racc6=(rhead3)/12;
racc7=(rhead3)/12;
racc8=(thead3)/12;

phia=0;
phib=pv/4;
phic=-pi/4;

cp=cos(phia);

sp=sin(phia);

ry=[cp 0 -sp;0 1 0;sp O cpl;
accl=[sqrt(2)/2 sqrt(2)/2 0];
acc2=[-sqgrt(2)/2 sqrt(2)/2 0];
accl=(ry*accl)';
acc2=(ry*acc2')’;

cp=cos(phib);
sp=sin(phib);

rz=[cp -sp 0;sp cp 0;0 0 1];
acc3=[sqrt(2)/2 0.5 0.5];
acc4=[-sqrt(2)/2 0.5 0.5};
acc5=[0 -1 1)/sqri(2);
acc3=(rz*acc3');
accd=(rz*acc4')’;
acc5=(rz*acc5');

cp=cos(phic);
sp=sin(phic);

rz=[cp -sp O;sp cp 0;0 0 1];
acc6=[sqrt(2)/2 0.5 0.5];
acc7=[-sqrt(2)/2 0.5 0.5];
acc8=[0 -1 1)/sqrt(2);
accb=(rz*acc6');
acc7=(rz*acc7')';
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acc8=(rz*acc8"),;
max1=0;

% ROTACC=[0.7071 -0.7071 0.1464 -0.8536 0.5000 -0.3000 -0.6660 1/0.6830;
% 0.7071 0.7071 0.8536 -0.1464 -0.5000 0.8124 -0.5536 //-0.1830;
% 0.0000 0.0000 0.5000 0.5000 0.7071 0.5000 0.5000 //0.7071]
% accl=(rotacc(:,1));

% acc2=(rotacc(:,2));

% acc3=(rotace(:,3))';

% accd=(rotacc(:,4))";

% acc5=(rotacc(:,5))";

% acc6=(rotacc(:,6))’;

% acc7=(rotacc(:,7))';

% acc8=(rotacc(;,8))';

rotl=cross(raccl,accl);
rot2=cross(racc2,acc2);
rot3=cross(racc3,acc3);
rot4=cross(racc4,acc4);
rotS=cross(raccS,acc5);
roté=cross(racc6,acc6);
rot7=cross(racc7,acc7);
rot8=cross(racc8,acc8);
rotacc=[accl’ acc2' acc3' acc4' acc5' ace6' acc7' acc8')
M=faccl rotl;

acc2 rot2;

acc3 rot3;

acc4 rotd;

acc5 rot5;

acch6 rot6;

acc7 rot7;

acc8 rot8];

for I=1:§, ...

b=eye(8,8); ...

b(L1)=0; ...

mnew=b*M; ...
msv(l)=min(svd(mnew)); ...
end; ...

msv

fork=1:8, ...

for j=1:8, ...

b=eye(8.8); ...

b(k,k)=0; ...

b(,j)=0; ...

mnew=b*M; ...
minsv(j,k)=min(svd(mnew)); ...
end; ...

end;

failmsv=minsv
minsv(1:2,1:2)=[10 10;10 10J; ...
mminsv=min(minsv);

zro= 0*ones(1,3);

152



Twtom= [acc] zro zro;
acc2 zro zro;
zro acc3 zro;
zZr0 acc4d zro;
Zro accS zro;
ZT0 zro acchH;
zZro zro acc’;
zro zro acc8]

96#3*##**##**&**‘*******t******#*****ttt***##**t***#tt*#t‘#‘#‘***“tt‘t#tttttttt##tt‘t

% ACTUATOR GEOMETRY
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96*“‘*‘*###‘****ttttttt**#‘*ttﬁ**t#t*#***‘t‘#*t*t**##*###“*#*‘l‘#“##t#ttt#t##tttttt

lowl_to_nate=[0 -1.008 0];

lowl_to_lpivot=[-1.08 -25.58 1.922};

lpivot_to_modc=[20.5 -45.5 36.2];

nate_to_cg={19.56 -12.93 38.40];

modtocg = -lpivot_to_modc-lowl _to_lpivot+lowl_to_nate+nate_to_cg;

%pushrod flex joint point on actuator lever arm
11=([-17.8 47.2 -31.3}-modtocg)/12;
12=([-18.6 64.2 -29.7]-modtocg)/12;
r3=([17.8 47.2 -31.3}-modtocg)/12;
14=([18.6 64.2 -29.7}-modtocg)/12;
r5=([13.2 68.6 -42.2}-modtocg)/12;
r6=([-13.2 68.6 -42.2]-modtocg)/12;
17=([3.9 47.9 39.3]-modtocg)/12;
18=([-3.9 47.9 39.3]-modtocg)/12;
ract=[r1'r2'r3' r4' 15'16' 17' 18'];

%

%pushrod flex joint point at end of pushrod
rel=([-17.8 67.5 -42.6]-modtocg)/12;
1e2=([-18.6 48.4 -42.4]-modtocg)/12;
re3=([17.8 67.5 -42.6]-modtocg)/12;
red=([18.6 48.4 -42.4]-modtocg)/12;
re5=({0.9 59.6 -40.2}-modtocg)/12;
re6=([-0.9 59.6 -40.2]-modtocg)/12;
re7=([10.7 72.4 39.3]-modtocg)/12;
1e8=({-10.7 72.4 39.3]-modtocg)/12;
rend= {rel' re2' re3' red' reS' re6' re7" re8’];
%

rd= rend - ract;

%

% pushrod unit vectors in rack coordinates
rd1norm=rd(:,1)/norm(rd(:,1));
rd2norm=td(:,2)/norm(rd(:,2}));
rd3norm=rd(:,3)/norm(rd(:,3));
rd4norm=rd(:,4)/norm(rd(:,4));
rdSnorm=rd(:,5)/norm(rd(:,5));
rd6énorm=1d(:,6)/norm(rd(:,6));
rd7norm=rd(:,7)/norm(rd(:,7));
rd8norm=rd(:,8)/norm(rd(:,8));
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rdnorm={rd 1norm rd2norm rd3norm rd4norm rdSnom rdénorm rd7norm rd8norm];
%

% lever arm unit vector direction in rack coordinates
rarm1={0 -1.1 -2.8]"/3.00832;

rarm2=[0 1.5 -2.6]'/3.0017;

rarm3=[0 -1.1 -2.8]'/3.00832;

rarm4=[0 1.5 -2.6]'/3.0017;

rarm5={1.3 -2.7 0]/2.99666;

rarm6=[-1.3 -2.7 0]/2.99666;

rarm7=[-2.8 1.2 0]/3.0463;

rarm8=[2.8 1.2 0]/3.0463;

%

% cg to actuator hinge point vector

r=3/12;

rlo=rl-r*rarml";

120=T2-r*rarm?2";

r3o=13-r*rarm3';

r40=r4-r*rarm4’;

150=t5-r*rarms";

160=T6-r*rarmé’;

170=t7-r*rarm?7';

r80=r8-r*rarm8’;

%

% complete the right handed coordinate system
rzl=cross(rarm1'rd1 norm');
1z2=cross(rarm2',rd2norm’);
rz3=cross(rarm3',rd3norm’);
rzd=cross(rarm4’,rd4norm');
rz5=cross(rarmS',rd5norm’);
rz6=cross(rarmé',rdénorm");
rz7=cross(rarm?7',rd7norm’);
rz8=cross(rarm8',rd8norm’");

%

% compute the transformation maping vectors in local actuator
% centered coordinates to center of mass coordinates
rotl={rarm] rd1norm rz1'];

rot2={rarm2 rd2norm rz2';

rot3=[rarm3 rd3norm rz3');

rotd=[rarm4 rd4norm rz4');

rot5=[rarmS5 rdSnorm rz5');

rot6={rarmé rd6norm rz6'};

rot7=[rarm7 rd7nom rz7'];

rot8=[rarm8 rd8norm rz8'};

zero= 0*ones(3);

t1= [rotl' zero;zero rotl'];
2= [rot2' zero;zero rot2'];
3= [rot3’ zero;zero rot3'];
t4= [rot4’ zero;zero rot4'];
t5= [rot5’ zero;zero rots'};
t6= [rot6’ zero;zero rot6'];
t7= [rot7' zero;zero rot7'];
8= [rot8' zero;zero rot8'];
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wr= [rlo' 120' r30' r140' r50' r60' r70' 180'};
wi= [t1 t2 t3 t4 t5 16 t7 t8];
m=0;...

bigx= 0*ones(48,6);
bigxt= 0*ones(6,48);
%

forj=1:8,...
rc(1,1)=0;...

1c(2,2)= 0;...
rc(3,3)=0;...

rc(1,2)= -wr(3,);...
rc(1,3)= wr(2,));...
1c(2,3)= -wr(1j);...
rc(2,1)= -rc(1,2);...
rc(3,1)= -re(1,3);...
rc(3,2)= -rc(2,3);...

c= [eye(3) -rc;zero eye(3)];...
for k= 1:6;...

for = 1:6;...

t(k, D)= wi(k, 1+m);...
end,...

end,...

x=t*c;...

x=x';...

for k= 1:6,...

for I= 1:6,...
bigx(k+m,1)= x(k,l);...
bigxt(k,l+m)= xt(k,1);...
end,...

end,...

m= m+6;...

end

96*#***t##ttt‘t*ttt*#t#t*#t###****t#***********##*t***tt#t*t**t****#*3#‘##*#***#*‘****

% STIFFNESS MATRICES FOR ACTUATORS IN LOCAL COORDINATES
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96*'***###****t*t*t##*##*ttt*"t**t**##tt***t#***t*t****tt*t#*****t**#ttt*t#**#*t#t*tt

11=23 3/12;12=20.2/12;13=23.3/12;14=20.2/12;
15=15.4/12;16=15.4/12;17=25.4/12;18=25 4/12;

%
kl=5/12;
k3= .5/12;
kd= .5/12;
kp=.5/12;
%

ks133= (k3+k4)/(11*11 }+kp/(r*1);...
ks1=[(k3+k4)/(11*11), k3411, O, O, O, O

KA1, (k1+K3)(r*r), 0, O, O, klir

0, 0, ksi33, k3/11, -r*(k3+k4)/(11*11)+kp/r, O

0, 0, k3i, k3, k311, 0
0, 0, -r*(k3+k4)/(11*11)+kp/r, -T*k3/11, (r*r)*(k3+k4)/(11¥11 )+kp, 0
0, ki, O, 0, 0, k1};
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gaml= [-(k3+k4)/(11*11), O, O, 0, 0, kM

-k3/(r*11), -kl/(r*1), O, 0, 0, 0
0, 0 -(k3+k4)/(11*11), k4/11, -kp/r, 0O
0, 0, -k3m, 0, 0, 0
0, 0, r*(k3+k4)/(11*11),-r*k4/11, -kp 0
0, xklrx, O, 0, 0, 0j;

ks233= (k3+k4)/(2*12)+kp/(r*1);...

ks2=[(k3+k4)/(12*12),k3/112, 0, O, 0, O
k3/12, (k1+k3)/(r*r), 0, 0, O, klr
0, 0, ks233, k3/12, -r*(k3+k4)/(12*12)+kp/r, 0
0, 0, k312, k3, -r*k3/12, 0
0, 0, -r*(k3+k4)/(12*12)+kp/r, -r*k3/12, (r*r)*(k3+k4)/(12%12)+kp, 0

0, klfr, O, 0, 0, K1}
gam2= [-(k3+k4)(12*12), 0, O, 0, 0, ka2
k3/(r*12), kl/(r*1), O, 0, 0, 0
0, 0 -(k3+k4)(12*12), k412, -kp/r, O

0, 0, k32, 0, 0, 0
0, 0, r*(k3+k4)/(12*12),-1*k4/12, -kp O
0, Xlf, O, 0, 0, O]

ks333= (k3+k4)/(13*13)+kp/(r*1);...

ks3=[(k3+k4)/(13*13), k3113, 0, 0, 0, ©
K3/t/13, k1+Kk3)(r*r), 0, 0, 0, klir
0, 0, ks333, k3/13, -r*(k3+k4)/(13*13)+kph, 0
0, 0, k313, k3, r*k313, 0
0, 0, -r*(k3+k4)/(13*13)+kp/r, -r*k3/13, (r*r)* (k3+k4)/(13*13)+kp, 0
O’

kir, o0, 0, O k1j;
gam3= [-(k3+k4)(13*13), 0, O, 0, 0, ka3

K3/r*13), -kl/r*r), O, 0, 0, 0

0, 0 -(k3+k4)(13*13), k4/13, -kp/r, 0

0, 0, k313, 0, 0, 0

0, 0, r*(k3+k4)/(13*13),-1*k4/13, -kp 0

0, X1k, O, 0, 0, O]

ks433= (k3+k4)/(14*14)+kp/(r*1);...

ksd=[(k3+k4)/(14*14),k3/t/14, 0, O, O, O
K34, (k1+k3)/(r*r), O, 0, O, klir
0, 0, ksd33, k3/14, -r*(k3+kd)/(14*14)+kp/r, 0
0, 0, k34, K3, k3M, 0
0, 0, -r*(k3+kd)/(14*14)+kp/r, -r*k3/M4, (r*)*(k3-+k4)/(14*14)+kp, 0
07

klA, 0, 0, 0, k1];

gamd= [-(k3+k4)/(14*14), 0, O, 0, 0, kdN4
k3/(r*14), -kl/r*1), O, 00 0, 0
0, 0 -(k3+k4)K14*14), k4/l4, -kp/r, O
0, 0, -k3/4, 00 0, O
0, 0, r*(k3+k4)/(14*14),-1*k4N4, kp O
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0, ki, O, 0, 0, o0
ks533= (k3+k4)/(15*15)+kp/(r*1);...

ksS=[(k3+k4)/(15*15), k3/115, 0, 0, 0, O
K3/115, (k1+k3)/(r*), O, O, O, kl/ir
0, 0, ks533, k315, -r*(k3+k4)/(15*15)+kp, 0
0, 0, k3.5, K3, r*k315, 0
0, O, -r*(k3+k4)/(15*15)+kp/r, -T*k3/15, (r*r)*(k3+k4)/(15*15)+kp, 0
0

, klr, 0, 0 o k1j;
gam5= [-(k3+k4)/(15*15), O, O, 0, 0, k415
K3/(r*15), -k1Ar*n), 0, 0, 0 0
0, 0 -(k3+k4)/(15%15), k4/15, kpfr, O

0, 0, k314, 0, 0, 0
0, 0, r*(k3+k4)/(15%15),-7*k4/15, -kp O
0, X1, 0, 0, 0, 0

ks633= (k3+k4)/(16*16)+kp/(r*1);...

ks6=[(k3+k4)/(16*16), k3/116, 0, 0, 0, O
K346, (k1+k3)/(r*r), 0, 0, 0, kli
0, 0, ks633, k316, -r*(k3+k4)(16*16)+kp/, 0
0, 0, k36, k3,  -r*k316, O
0, 0, -r*(k3+k4)/(16*16)+kp/r, -r*k3/16, (r*1)*(k3+k4)/(16*16)+kp, 0
0

, kl/, 0, 0, 0, ki};
gam6= [-(k3+k4)/(16*16), O, 0, 0, 0, k4716
-k3/(r*16), -kl/(r*1r), O, 0, 0, O
0, 0 -(k3+k4)/(16*16), k4/16, -kp/r, O
0, 0, -k3/e, 0, 0, O
0, 0, r*(k3+k4)/(16*16),-r*k4/16, -kp O
0, kir, 0, 0, 0, 0}

ks733= (K3+k4)/(17*17)+kp/(r*1);...

ks7=[(k3+k4)/(17*17), k3117, 0, 0, 0, O
K347, k1+k3)/(r*r), 0, O, O, kli
0, 0, ks733, k317, -r*(k3+k4)/(17*17)+kplr, 0
0, 0, k317, k3, k317, 0
0, 0, -r*(k3+k4)/(17*17)+kp/r, -r*k3/17, (r*r)*(k3+k4)/(17*17)+kp, 0
0, klir, 0, 0, 0, ki};

gam7= [-(k3+k4)/(17*17), O, G, 0, 0, k417
k3/(r*17), -kl/(r*1), O, 0, 0, 0
0, 0 -(k3+k4)/(17*17), k4117, -kp/r, O
0, 0, -k317, 0, 0, 0
0, 0, r*(k3+k4)/(17%17),-r*kd/17, kp O
0, k1, O, 0, 0, O}

ks833= (k3+k4)/(18*18)+kp/(r*1);...

ks8=[(k3+k4)/(18*18),k3/N18, 0, 0, 0, O
K348, (k1+k3)/(r*r), 0, O, O, kli
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0, 0, ks833, k3/18, -r*(k3+kd)/(I18*18)+kp/r,0
0, 0, Kk3/s, k3, k318, 0
0, 0, -r*(k3+k4)/(18*I8)+kp/r, -r*k3/18, (r*r)*(k3+k4)/(18*18)+kp, 0
0, kI, 0, 0, 0 K1}
gam8= [-(k3+k4)/(18*18), 0, O, 0, 0, k4/18
k3/(r*18), -kl/(r*r), O, 0, 0, 0
0, 0 -(k3+k4)/(18*18), k4/18, kp/r, 0
0, 0, k318, 0, 0, 0
0, 0, r*(k3+k4)/(18%18),-r*k4/18, -kp 0
0, Xla, O, 0, 0, O]

96*“*#***!“**t#‘ttt‘*ttttt**##t*#*#**t**##‘*tt#**#***l***#*t‘**t#“'#t‘t*#‘*#*####t#

% AGGREGATE ACTUATOR STIFFNESS IN CENTER OF MASS COORDINATES
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96&#*‘**‘#*#t**tt*##‘##‘*t#ttt#t*##*#t#t‘*lt‘#ttt‘**t*t#*ttt**‘t‘*t*t‘#tttt*t*#***t*t*

zro= 0*ones(6);...

bigk= [ks1 zro zro zro zro zro zro zro;
zro ks2 zro zro zro zro zro zro;
zro zro ks3 zro zro zro zro zro;
2ro zro zro ks4 zro zro zro zro;
zro zro zxo zro ks5 zro zro zro;
20 ZT0 210 210 Zr0 ks6 Zro zro;
ZTO0 ZI0 ZY0 ZIo zro zro ks7 zro;
ZIo zro zro zro zro zro zro ks8J;

ks= bigxt*bigk*bigx;
gamx= gam]*tl+gam?2*t2+gam3 *t3+gam4*t4+gam5*t5+gam6*16+gam7*t7+gam8*18;

96*&********#*******##**#t#****#*#**#***t*t*t‘*t*tt*&*t*‘*#***t**t*t***tt#*ttt*tt****t

%EIGENVALUES AND EIGENVECTORS OF SYSTEM WITH UMBILICALS AND ACTUATORS
% AND
%APPROXIMATION OF PHYSICAL DAMPING MATRIX FOR UMBILICALS AND ACTUATORS

96##t******#*####‘***tt#*‘*tt#*tt*ttt*t**ttt#l‘t*‘tt**ttt*#*t*tttt*‘tlt*t*tt#tttt*#**t

%TOTAL STIFFNESS: UMBILICALS AND ACTUATORS
K=Kumb-+ks;

[V,D]=eig(invmass*K);

%NORMALIZED EIGENVECTORS
massdiag=V'*massmat*V;

for i=1:6

phi(:,1)=V(:,i)/(massdiag(i,i))"0.5;
end
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%APPROXIMATION FOR UMBILICAL AND ACTUATOR DAMPING IN PHYSICAL
COORDINATES

C=inv(phi')*2*0.015*D."0.5*inv(phi);

96##8***#‘#‘**#***##1*tt***tt#t*tt‘tt##**t**tt*t**#t*ttt#‘*tt“t#‘**‘titt*t‘tttttt*t**

%TRANSFORMATION FROM CONTROL INPUTS TO FORCE COMPONENTS
%FOR EXCITING FLEXIBLE MODES
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96ttt*t*********tl‘t*t**t.tt**t‘t*t##t*******ttt***t*tt*#'*t###‘#t*##tt**#t*ttttttt*‘*

zro= 0*ones(3,1);

Tutow=[rdlnorm zro zro zZr0o zro zro zro zIo;
zro rd2norm zZro zZo zZro o O ZI0
zo zro rd3morm zo zZro zro zZro zro;
zZo zrto zro rddnorm zro zro zZro zro
Zro zro zro zro rdSmorm zro zro zIo
zZo zZmo zZo zro zro rdénorm zro 2zro
zZo zmo zro o zro zro rd7morm 2zro
zZo zro zo o zro o zro rd8norm}

96#3“l*t*t#t*tt‘****ttttt‘tt*###*t***#****t*******#**#ttttt#*##tt#t*t*tt*ttttttt*tttt

%RESOLVE ACTUATOR FORCE DIRECTIONS ALONG RACK COORDINATES TO COMPUTE

%FORCEAND TORQUE INPUTS FROM THE ACTUATORS
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96**#*‘#‘*tttl*tttttttt#*tt*t**t*“#t*t*****#3‘****#“‘****tt*##ttt*ttt*t#t*ttttt**t*t

ful,x]}= crossudf(ract(:,1)’,rd1norm');
[u2,x]= crossudf(ract(:,2)',rd2norm");
[u3,x]}= crossudf{ract(:,3),rd3norm'");
[v4,x]= crossudf{ract(:,4)",rd4norm’);
[uS,x]= crossudf(ract(:,5)',rdSnorm’);
[u6,x]= crossudfiract(:,6)',rd6énorm");
[u7,x]= crossudf(ract(:,7)",rd7norm');
[u8,x]= crossudfiract(:,8)',rd8norm");
Tutox= [rd 1norm rd2norm rd3norm rd4norm rd5norm rdénorm rd7norm rd8norm;
ul' uv2 w3l ud' us' w6 u7 uf ]

%Simulate removal of #8 actuator on baseline

%Tutox(:,7)=zeros(6,1);

96#***#.**3*#*##&**tttt*t*t*ttt*ttt#t**********t**#t*‘*t#t*t.#t**t*tt#**#*t***###tttt*:

% RESOLVE RIGID BODY MOTION ALONG THE ACTUATOR PUSHRODS
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96‘*‘#*#**t**t*#***ttt&*t‘t**#****#*#t#‘t#t******‘***#t###***'#tt*tt**#t##***ttt*#*#t*

[x,y,rc1]= crossudf{zro',ract(:,1)");
[x,y.1c2]= crossudf(zro’,ract(:,2)');
[x,y,rc3}= crossudf(zro’,ract(;,3)");
[x,y,rcd)= crossudf(zro',ract(:,4)");
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[x,y,rc5]= crossudf{zro'ract(:,5));
[%,y,rc6]= crossudfizro',ract(:,6)");
[x,y,rc7}= crossudf{zro’,ract(:,7)');
[x,y,1c8}= crossudf{zro',ract(:,8)";
Txal= [eye(3) -rcl];

Txa2= [eye(3) -rc2];

Txa3= [eye(3) -rc3];

Txad4= [eye(3) -1c4];

Txa5= [eye(3) -1c5);

Txa6= [eye(3) -1c6];

Txa7= [eye(3) -1c7];

Txa8= [eye(3) -rc8];

Txtop= Tutow'*[Txal;Txa2;Txa3;Txa4;Txa5;Txa6;Txa7;Txa8]

xp= Txtop;

Tptox= inv(xp"*xp)*xp'

xp=Txtop;

Tptox=inv(xp"xp)*xp’;

96‘3#*##‘#****t*tttttt**#t*##tttlt#t'*ttt“t* *kx REREEEEREERE R KGR R TR E kKR K
% MAP RIGID BODY ACCELERATION TO ACCELEROMTER LOCATIONS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)
eﬁttt#*ttttt#t*tt****3#**#* sv**###**t**##tl#ttt#ttt#*#t#*ttttt#tt*ttttt*t

cl=[-17.7 14.1 279 }/12;
rc2=[-17.711.2 -31.5y/12;
re3=[17711.2-31.5}/12;
[x,y,rcc1]= crossudf(rcl,rcl),
[x,y.rcc2]= crossudf(rc2,rc2);
[x,y.rcc3]= crossudf(rc3,rc3);
Txtow= [eye(3) -rccl;
eye(3) -rcc2;
eye(3) -rcc3}
Twtom
Txtom= Twtom*Txtow
Tmtox= pinv(Txtom)
checkXtoX= Tmtox*Txtom

96‘8#&t‘t3‘**t#*#**tt#‘#t‘t*tttt*##**t###tt'ttttttl‘t‘ttt*tt#t*t*#*tt‘#tt#tt**ttt#t“*

% TRANSFORMATION OF ACCELERATION COMMANDS TO ACTUATOR COMMANDS
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96*#**&#*‘*‘****##**##**t‘#t*ttt**t*t‘**#’****t#***tt*‘t#*‘****#*‘#***ttt*t#**t#t‘#t‘*

ftorl,x1,x2]= crossudf{ract(:,1)',xd(:,1)";
[tor2,x1,x2]}= crossudf{ract(:,2)',rd(:,2)");
[tor3,x1,x2}= crossudf{ract(:,3)',rd(:,3)");
[tor4,x1,x2]= crossudf{ract(;,4),rd(:,4)");
[tor5,x1,x2]= crossudf{ract(:,5),rd(:,5)";
[tor6,x1,x2)= crossudf{ract(:,6)',rd(:,6)");
[tor7,x1,x2}= crossudf(ract(:,7),rd(;,7)";
[tor8,x1,x2]= crossudf{ract(:,8)',rd(:,8)");
ttor= [tor1' tor2' tor3' tor4' torS' tor6' tor7' tor8';
fori=1:8,...
mag= norm(ttor(:,i));...
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ttoru(:,1)= ttor(:,i)/mag;...

end

Tdelxtou= [rdlnorm' ttoru(:,1)"/norm(ract(:,1));
rd2norm’ ttoru(:,2)'/norm(ract(:,2));
rd3norm’ ttoru(:,3)"/norm(ract(:,3));
rd4norm' ttoru(:,4)'/norm(ract(:,4));
rd5Snom' ttoru(:,5)"/norm(ract(:,5));
rd6énorm’ ttoru(:,6)"/norm(ract(:,6));
1d7nomn' ttoru(:,7)'/norm(ract(:,7));
rd8norm’ ttoru(:,8)"/norm(ract(:,8))];

Tdelxtou= pinv(Tutox)

checkxtox= Tutox*Tdelxtou

96*#“*ttt***tt*ttttt**tt#t‘*ttl*ttt#l##t*#t"##t‘**t*‘*‘t‘**“*tt#ttttt#tttttt#tttt#*

% AUXILLIARY PARAMETERS

96‘3“*#*‘t*‘ttt#t‘*t‘#tttt**‘tt*t#t‘t*###‘#t**##**#ttt“‘##*tt*l#lt‘ttttt“#ttttt#t‘t

twozeta=0.03*eye(6);
intoft=0.08333*eye(9);

cgx=0;
cgy=0;
cgz=0;

idm=massmat;
ctm=eye(6,6);
ctmi=eye(6,6);
ctmeg=[0, cgz,-cgy;
-cgz,0,c8x;
cgy,-cgx,0];

ctm(1:3,4:6)=ctmcg;
ctmi(4:6,1:3)=-ctmcg;

pk=zeros(6);

pk=K;

w2=14,

for i=1:6
pk(i,1)=w2*w2*massmat(i,i)-K(i,i);
end

Gain=1*eye(6);
Gainl=1*eye(6);

%Position vector of the pth disturber, relative to the rack center of mass
rpvect=[1.75,1.59,3.17];
rptens=[0,-rpvect(1,3),1pvect(1,2);

rpvect(1,3),0,-rpvect(1,1);

-rpvect(1,2),rpvect(1,1),0];

96*********#**t********#t‘*t**t##**#t***l***t*****************t**t***t**tt#*t
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% PLOTTING ROUTINE

%#t*tt*tttttﬁ#**tt‘*##t##t‘tt*#t*‘tt*t##t‘tttttttt‘#t*#**‘t‘**t#‘#ttttt*‘#**

% Set up Frequency vector from 0.001 to 20 Hz
q

wmax=10*6.28;

wmin=0.001*6.28;
wmin_pow=log10(wmin);
wmax_pow=log10(wmax);
w=logspace(wmin_pow,wmax_pow,300);
whz=w/6.28;

%disp(‘rack_ol")
%[AolBol,Col,Dol]=linmod('rack_ol");
%[mag,phase]=bod1(Aol,BoL,Col,Dol,7,w);
%magl(:,1)=log10(mag);
%semilogx(whz,20*magl(:,1));
%axis([.001 10 -80 40])

fori=1:3
[AcLBclCcl,Dcl}=linmod(‘aris_cl');
[mag,phase}=bode(Acl,Bcl,Ccl,Dcli,w);

magl(:,i)=log10(mag);

PHASEC(:,i)=phase

end
scmilogx(whz,ZO*magl(:,1),'y',whz,20“magl(:,2),'y-',whz,20*magl(:,3),'y.');
axis([.001 10 -150 40]);

%figure
%scm.ilogx(whz,PHASE(:,l),'y',whz,PHASE(:,Z),'y-—‘,whz,PHASE(:,3),'y.’);
%axis([.001 10 -180 180]);

%[Acl,Bcl,Ccl,Dcl]=linmod(‘aris_cl'");
%[mag,phase]=bode(Acl,Bcl,Ccl,Dcl,2,w);
%magl(:,2)=log10(mag);

%PHASE(:,1)=phase
%semilogx(whz,20*magl(:,1),".,whz,20*magl(:,2));
%axis([.001 20 -80 20]);

%figure

%semilogx(whz, PHASE(:,1));

%axis([.001 20 -500 360))

%#t**#*tt**tt**‘#‘##**#tt**#*t* END OF FH‘E EEREXEERRERER R KA EERIEERR R E kR TR RS
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% THIS M-FILE GENERATES PHYSICAL PARAMETERS FOR THE ARIS RME RACK

96‘*‘#********#*‘#**‘*‘****##ttt*tt#tt*#t*#***t#**tt##*#tt*t#t***t#*t###*ttttt

% RACK RME MASS PROPERTIES

96##*#*********tt******3*!***#**#‘#****t**t#tt#t***t###t#t*tt*‘*‘*#‘**‘#*#ttt#

% MEASURED MASS IN SLUGS (RSA LOGISTICS INCLUDED)

MR=27.6;

% MEASURED MOMENT OF INERTIA TENSOR (SLUG-FT*2)
% THIS IS FOR RACK WITH RSA LOGISTICS

IR=[113,2.7, 2;
2.7,123,5.7;
2,5.7,47);

% AGGREGATE MASS MATRIX

massmat=zeros(6);
massmat(1:3,1:3)=[MR,0,0;0,MR,0;0,0, MR];
massmat(1:3,4:6)=zeros(3);
massmat(4:6,1:3)=zeros(3);
massmat(4:6,4:6)=IR;

invmass=inv(massmat);

96#*‘*#**#**‘##**#**3‘#t**************#************t*t#tt**#t‘**tt*#t#t****t*t‘

% UMBILICAL AND ACTUATOR STIFFNESS PROPERTIES
% (MEASURED ON ORBIT)

96*****t**#****‘**tlt**t##t‘#*****t*********t#******#t*t*****#t***t##*t**#tﬁ***

% MINIMUM UMBILICAL STIFFNESS TEST RESULTS

Kmu=({64.5,3.6,2.6,4.5,-194,31;
3.6,54.5,0,145,-12,-17;
2.6,0,49.2,-20,11,5;
4.5,145,-20,503,-29,-54;
-194,-12,11,-29,662,-86;
31,-17,5,-54,-86,72.4];

% PARTIAL UMBILICAL STIFFNESS RESULTS

Kpu=([102,7.6,-3.1,9.6,-293,66;
7.6,81.6,-2.9,230,-21,-0.7;
-3.1,-2.9,81.3,-52,5.8,8;
9.6,230,-52,720,-66,-18;
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-293,-21,5.8,-66,923,-181;
66,-0.7,8,-18,-181,106);

%t****t**‘****t#*tt*##t*l*#*t‘ £ 2 3 * *#*tt*t**ttt#t**tt‘ttttt‘**t*ttt****ttt
% ACCELEROMETER GEOMETRY

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)
%t*‘*#****#t**tt#*#*t#t* *% kg v*t**“l*l*******#t*“**t‘t*t#*t*****
%clear msv

centocg=[0,0,0];

thead1=[-17.7 14.1 27.9]-centocg;
rthead2=[-17.7 11.2 -31.5]-centocg;
rhead3=[17.7 11.2 -31.5}-centocg;
raccl=(thead1)/12;
racc2=(rhead1)/12;
racc3=(rthead2)/12;
racc4=(rhead2)/12;
racc5=(rhead2)/12;
racc6=(rthead3)/12;
racc7=(rhead3)/12;
racc8=(thead3)/12;

phia=0;
phib=pi/4;
phic=-pi/4;

cp=cos(phia);

sp=sin(phia);

ry=[cp O -sp;0 1 O;sp O cp];
accl=[sqrt(2)/2 sqrt(2)/2 0];
acc2=[-sqrt(2)/2 sqrt(2)/2 0);
accl=(ry*accl')’;
acc2=(ry*acc2");

cp=cos(phib);
sp=sin(phib);

rz=[cp -sp 0;sp cp 0;0 0 1];
acc3=[sqrt(2)/2 0.5 0.5];
acc4=[-sqrt(2)/2 0.5 0.5};
acc5=[0 -1 1)/sqrt(2);
acc3=(rz*acc3');
accd=(rz*acc4')';
acc5=(rz*acc5')’;

cp=cos(phic);
sp=sin(phic);

rz=[cp -sp O;sp cp 0;0 0 1];
accb=[sqrt(2)/2 0.5 0.5];
acc7=[-sqrt(2)/2 0.5 0.5];
acc8=[0 -1 1)/sqrt(2);
acc6=(rz*acc6')’;
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acc7=(rz*acc7")’;
acc8=(rz*acc8")’;
max 1=0;

% ROTACC=[0.7071 -0.7071 0.1464 -0.8536 0.5000 -0.3000 -0.6660 //0.6830;
% 07071 0.7071 0.8536 -0.1464 -0.5000 0.8124 -0.5536 //-0.1830;
% 0.0000 0.0000 0.5000 0.5000 0.7071 0.5000 0.5000 //0.7071]
% accl=(rotacc(:,1))’;

% acc2=(rotacc(:,2))';

% acc3=(rotacc(:,3))';

% accd4=(rotacc(:,4))’;

% accS5=(rotacc(:,5))’;

% acc6=(rotacc(:,6))';

% acc7=(rotacc(:,7))';

% acc8=(rotacc(:,8))’;

rotl=cross(raccl,accl);
rot2=cross(racc2,acc2);
rot3=cross(racc3,acc3);
rot4=cross(racc4,acc4);
rot5=cross(racc5,acc5);
roté=cross(racc6,acc6);
rot7=cross(racc7,acc7);
rot8=cross(racc8,acc8);
rotacc=facc1’ acc2' ace3' accd’ acc5' acc6' acc7' acc8']
M=[accl rotl;

acc2 rot2;

acc3 rot3;

acc4 rot4;

accS rot5;

acch rot6;

acc7 rot7,;

acc8 rot8];

for =18, ...

b=eye(8,8); ...

b(LD)=0; ...

mnew=b*M; ...
msv(l)=min(svd(mnew)); ...
end; ...

msv

for k=18, ...

for j=1:8, ..

b=eye(8,8); ...

b(k,k)=0; ...

b(.))=0; ...

mnew=b*M; ...
minsv(j,k)=min(svd(mnew)); ...
end; ...

end;

failmsv=minsv
minsv(1:2,1:2)=[10 10;10 10]; ...
mminsv=min(minsv);
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zro= 0*ones(1,3);

Twtom= [acc] zro zro;
acc2 zro zro;
Zro acc3 zro;
zro acc4 zro,
Zro acc5 zro;
Zro ™o  acch;
ZIo zro acc7y;
zZro zro acc§]

96#**&**t‘t‘*#ttt*t*##t#***tl*t#*tttﬂ** #*t****t't‘**#t‘t*t#t‘*‘**#‘tt‘t‘*t

% ACTUATOR GEOMETRY
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96#*‘#*‘t“t*##tt*t**t'*‘t‘tt XEEES -#*t*t.*t#*tt't*t.ttttt.‘t.t*#t‘

low]_to_nate=[0 -1.008 0];

lowl_to_lpivot=[-1.08 -25.58 1.922);

Ipivot_to_modc=[20.5 -45.5 36.2];

nate_to_cg=[19.56 -12.93 38.40];

modtocg = -lpivot_to_modc-lowl_to__lpivot+lowl_to_natc+nate_to__cg;

%pushrod flex joint point on actuator lever arm
r1=({-17.8 47.2 -31.3}-modtocg)/12;
12=([-18.6 64.2 -29.7}-modtocg)/12;
13<[17.8 47.2 -31.3}-modtocg)/12;
r4=([18.6 64.2 -29.7]-modtocg)/12;
r5=([13.2 68.6 -42.2}-modtocg)/12;
r6=([-13.2 68.6 -42.2]-modtocg)/12;
17<([3.9 47.9 39.3)-modtocg)/12;
18=([-3.9 47.9 39.3]-modtocg)/12;

ract= [r]1'r2'13' r4' 15' 16' r7' 18'];

%

%pushrod flex joint point at end of pushrod
rel=([-17.8 67.5 -42.6]-modtocg)/12;
re2=([-18.6 48.4 -42.4}-modtocg)/12;
re3=([17.8 67.5 -42.6]-modtocg)/12;
re4=([18.6 48.4 -42_4]-modtocg)/12;
re5=([0.9 59.6 -40.2]-modtocg)/12;
re6=([-0.9 59.6 -40.2]-modtocg)/12;
re7=([10.7 72.4 39.3]-modtocg)/12;
re8=([-10.7 72.4 39.3]-modtocg)/12;
rend= [rel’ re2' re3' re4' re5' re6' re7' re8'];
%

rd=rend - ract;

%

% pushrod unit vectors in rack coordinates
rdlnorm=rtd(:,1)/norm(rd(:,1));
rd2norm=rd(:,2)/norm(rd(:,2));
rd3norm=rd(:,3)/norm(rd(:,3));
rd4norm=rd(:,4)/norm(rd(:,4));
rd5Snorm=rd(:,5)/norm(rd(:,5));
rdénorm=rd(:,6)/norm(rd(:,6));
rd7norm=td(:,7)/norm(rd(:,7));
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rd8norm=rd(:,8)/norm(rd(:,8));

rdnorm={rd Inorm rd2norm rd3norm rd4norm rd5norm rdénorm rd7norm rd8norm);
%

% lever arm unit vector direction in rack coordinates
rarm1=[0 -1.1 -2.8]/3.00832;

rarm?=[0 1.5 -2.6]/3.0017;

rarm3=[0 -1.1 -2.8]/3.00832;

rarm4=[0 1.5 -2.6]/3.0017;

rarm5=[1.3 -2.7 0]'/2.99666;

rarm6={-1.3 -2.7 0]'/2.99666;

rarm7=[-2.8 1.2 0]/3.0463;

rarm8={2.8 1.2 0]'/3.0463;

%

% cg to actuator hinge point vector

r=3/12;

rlo=rl-r*rarml’;

r20=t2-r*rarm?2’;

r30=13-r*rarm3’;

r4o=t4-r*rarm4’;

r50=tr5-r*rarm5';

r6éo=r6-r*rarm6’;

r7o=t7-r*rarm7',

r80=r8-r*rarm8’;

%

% complete the right handed coordinate system
rzl=cross(rarml’,rd1norm’);
rz2=cross(rarm2’,rd2norm");
rz3=cross(rarm3',rd3norm");
rzd=cross(rarm4',rd4norm’);
rz5=cross(rarm5',rd5norm’);
rzé=cross(rarmé',rd6norm’);
rz7=cross(rarm7',rd7norm');
rz8=cross{rarm8',rd8norm');

%

% compute the transformation maping vectors in local actuator
% centered coordinates to center of mass coordinates
rotl=[rarm1 rd1norm rz1'};

rot2={rarm? rd2norm rz2'];

rot3=frarm3 rd3norm rz3'};

rot4=[rarm4 rd4norm rz4'];

rot5=[rarmS$ rd5norm rz5';

rot6=[rarm6 rd6norm rz6'];

rot7=[rarm7 rd7norm rz7');

rot8=[rarm8 rd8norm rz8'];

zero= O0*ones(3);

t1= [rotl' zero;zero rotl'];
t2= [rot2' zero;zero rot2'];
t3= [rot3' zero;zero rot3'];
t4= [rot4' zero;zero rot4'};
t5= [rot5’ zero;zero rot5'];
t6= [rot6' zero;zero rot6'];
t7=[rot7' zero;zero rot7'];

167



t8= [rot8' zero;zero rot8'];
wr= [r1o' 120’ 130' r40' 150' r60' 170' 180');
wt=[tl 12 t3 t4 t5 6 t7 18];
m=0;...

bigx= 0*ones(48,6);
bigxt= 0*ones(6,48);

%

forj=1:8,...

rc(1,1)=0;

rc(2,2)=0;...

rc(3,3)=0;...

rc(1,2)= -wr(3,j);...
re(1,3)= wr(2,j);...
re(2,3)= -wr(1);...
re(2,1)= -rc(1,2);...
rc(3,1)= -rc(1,3);...
rc(3,2)= -rc(2,3);...
c=[eye(3) -rc;zero eye(3)];...
for k= 1:6;..

for 1= 1:6;...

t(k,1)= wt(k,1+m);...
end,...

end,...

x=t¥c;...

xt=X';...

fork=1:6,...

forl=1:6,...
bigx(k+m,l)= x(k,1);...
bigxt(k,l+m)= xt(k,1);...
end,...

end,...

m= m+6;...

end

%tttt**#t#**t**tt*##*****ttt*#t*#*ttt*t* ERAEEIBEERRREEREREEERERERER RN KRR AR R EEEERERE K

% STIFFNESS MATRICES FOR ACTUATORS IN LOCAL COORDINATES
% (THIS SECTION PROVIDED BY ARIS DEVELOPER.S)
YR ERKAREEE N EA KRR ERRAREREEEEERRR AR RRR KR RN S PP TP

11=23.3/12;12=20.2/12;13=23.3/12;14=20.2/12;
15=15.4/12;16=15.4/12;17=25.4/12;18=25.4/12;

%
k1= .5/12;
k3= .5/12;
kd= .5/12;
kp=.5/12;
%

ks133= (k3-+kd4)/(11*11)+kp/(r*r);..
ks1=[(k3+k4)/(11*11), k3411, O, 0, 0, O

K341, (k1+k3)Ar*r), 0, 0, 0, klir

0, 0, ksI33, k31, -r*(k3+k4)/(11*11)+kp/, 0

0, 0, k311, k3, k311, O
0, 0, -r*(k3+k4)/(11*11)+kp/r, -r*k3/11, (r*r)*(k3+k4)/(11*11)+kp, 0
0, klr, O, 0, 0, k1];
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gaml= [-(k3+k4)/(11*11), 0, O, 0, 0, k41l

Kk3/(r*11), -kl/r*r), O, 0o, 0, 0
0, 0 -(k3+k4)/(11*11), k4/11, -kpir, O
0, 0, -k3/1, 0o, 0, 0

0, 0, r*(k3+k4)/(11*11),-1*k4/11, kp O
0, X1/, 0, 0, 0, O]

ks233= (k3+k4)/(L2*12)+kp/(r*1);...

ks2=[(k3+k4)/(12*12), k3112, O, 0, 0, O
K312, (k1+K3)(r*r), 0, 0, 0, klir
0, 0, ks233, k3/12, -r*(k3+k4)/(12*12)+kph, O
0, 0, k3D, K3, 3R, 0
0, 0,-r*(k3+k4)/(12*12)+kp/r, -r*k3/12, (r*1)* (k3+k4)(12*12)+kp, O
0,

ki, 0, 0, 0, k1];

gam2= [-(k3+k4)/(12*12), O, O, 0, 0, k412
-k3/(r*12), -kl/(r*1r), O, 0, 0, 0
0, 0 -(k3+k4)/(12*12), k4/12, -kpr, O
0, 0, -k3/12, 0, 0, 0
0, 0, r*(k3+k4)/(12*12),-r*k4/12, -kp O
0, -kln, O, 0, 0, 0j;

ks333= (k3+k4)/(13* 13 )+kp/Ar*D);...

ks3=[(k3+k4)/(13*13),k3/1/13, 0, 0, 0, 0
K3AMm, (k1+k3)(r*r), 0, 0, O, klir
0, 0, ks333, k3/13, -r*(k3+k4)/(13*I3)+kp/r, 0
0, 0, k313, k3, *k313, 0
0, 0, -r*(k3+kd)/(13%13)+kp/r, -r*k3/13, (r*r)*(k3+k4)/(13*13)+kp, 0
0’

klr, 0, 0, 0, K1};
gam3= [-(k3+k4)/(13*13), 0, O, 0, 0, k413

X3/(r*13), -kl/(r*r), O, 0, 0, 0

0, 0 -(k3+k4)/(13*13), k4/13, -kp/r, O

0, 0, -k3/13, 0, 0, O

0, 0, r*(k3+k4)/(13%13),-r*k4/13, kp 0

0, Xlr, O, 0, 0, O]

ksd33= (k3+k4)/(14*14)+kp/(r*1);...

ksd=[(k3+k4)/(14*14), kK3/14, 0, 0, 0, O
K3/t/14, (k1+k3)/(r*r), 0, O, 0, klir
0, 0, ks433, k3/4, -r*(k3+k4)/(14*14)+kp/, 0
0, 0, k3/4, k3, k34, O
0, 0, -r*(k3+k4)/(14*14)+kp/t, -r*k3/14, (r*1)*(k3+k4)/(14*14)+kp, O
0, ki, O 0, 0, ki)

gamd= [-(k3+k4)/(14*14), 0, O, 0, 0, k4n4
&3/(r*14), -k1/(r*1), O, 0, 0, 0
0, 0 -(k3+k4)(14*14), k4/14, -kpir, 0
0, 0, -k3/4, 0, 0, ©
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0, 0, r*(k3+k4)/(14*4),-7*k4/4, -kp 0
0, X1, o, 0o, 0, 0

ks533= (k3+k4)/(15*15)+kp/(r*1);...
ks5=[(k3+k4)/(15*15), k315, 0, O, 0, ©

k345, k1+k3)(r*r), 0, 0, O, klir
0, 0, ks533, k315, -r*(k3+k4)/(15*15)+kp/r, 0

0, 0, k315, k3,  *k315, 0
0, 0,-r*(k3+k4)/(1S*1S)+kp/, -r*k3/15, (r*r)*(k3+ka4)/(15*15)+kp, 0
0, kir, 0, o0, 0, k1};
gam5= [-(k3+k4)/(15*15), 0, O, 0, 0, kdAs
k3/(r*15), -k1/(r*1), O, 00 0, 0
0, 0 -(k3+k4)/(15*%15), k4/15, -kph, O
0, 0, -k3N4, 0, 0, 0
0, 0, r*(k3+k4)/(15%15),-1*k4/15, kp 0
0, ki, 0, 0, 0, O]

ks633= (k3+k4)/(16*16)+kp/(r*r);...

ks6=[(k3+k4)/(16*16), k3416, 0, 0, 0, O
K3/116, (k1+k3)/(r*r), 0, 0, 0, kli
0, 0, ks633, k3/16, -r*(k3+k4)/(16*16)+kpr, 0
0, 0, k376, k3, k306, 0
0, 0, -r*(k3+k4)/(16*16)+kp/r, -T*k3/16, (r*r)*(k3+k4)/(16*16)+kp, 0

0, klIr, 0, 0, o k1J;
gamé= [-(k3+k4)/(16*16), 0, O, 0, 0, k416
K3/r*16), -kl/(r*1), O, 0, 0, 0
0, 0 -(k3+k4)/(16*16), k4/16, -kp/r, O
0, 0, k316, 0, 0, 0
0, 0, r*(k3+k4)/(16*16),-7*k4/16, -kp 0
0, k1A, 0, 0, 0, 0

ks733= (k3+k4)/(17*17)+kp/(r*r);..

ks7=[(k3+k4)/(17*17), k3117, 0, 0, 0, O©
k3217, (k1+k3)(r*r), 0, O, O, ki/r
0, 0, ks733, k317, -r*(k3+k4)/(17*17)+kp/r, 0

0, 0, k317, k3, -r*k3/17, 0

0, O, -r*(k3+k4)/(17*17)+kp/r, -1*k3/17, (r*r)*(k3+k4)/(17*17)+kp, 0

0, klnh, 0, 0, 0, kl};

gam7= [-(k3+k4)/(17*17), 0, 0, 0, 0, k417
-k3/(r*17), -kl/(r*r), O, 0, 0, O

0, 0 -(k3+k4)/(17*17), k4117, -kp/r, O
0, 0, -k317, 0, 0, 0
0, 0, r*(k3+k4)/(17*17),-1*k417, -kp 0
0, -klr, 0, 0, 0, 03

ks833= (k3+k4)/(18*18)+kp/(r*1);...
ks8=[(k3+k4)/(18*18), kK3/118, 0, 0, 0, O
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K38, (k1+k3)/(r*r), 0, 0, 0, kli
0, 0, ks833, k3/18, -r*(k3+k4)/(18*18)+kp/, 0

0, 0, k3.8, k3,  *k318, 0
0, 0, -r*(k3+kd)/(18*18)+kp/r, -r*k3/18, (r*1)*(k3+k4)/(18*18)+kp, 0
0, klir, 0, 0, 0, K1}
gam8= [-(k3+k4)/(18*18), 0, O, 0, 0, k4/18
K3/(r*18), -k1/r*1), O, 00 0 O
0, 0 ~(k3+k4)/(18*18), k4/18, -kp/r, O
0, 0, -k3/18, 0, 0, O
0, 0, r*(k3+kd4)/(18*18),-r*k4/18, -kp 0
0, Xl 0, 0, 0, O]

96&*“#‘**ttt*ltt#*#t**#‘#*#*tt*t*#tt*‘t**‘t#*#*‘t‘*t“*ttttt######t#ttt*tttt#ttttttt#

% AGGREGATE ACTUATOR STIFFNESS IN CENTER OF MASS COORDINATES
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96*#**‘*#‘#***“**tt#t##*t#*t##‘###t*tt't##***#t*#####*t*t“‘t*#tt‘**#t**#‘*t#t**t###t

zro= 0*ones(6);...

bigk= [ks! zro zro zro zro zro zro zro;
2zro ks2 zro zro zro zro zro zxo;
zr0 zro ks3 zro zro zro zro zro;
zro 210 210 ks4 zro zro zro zro;
210 ZT0 Zro zro Ks5 zro zro zro;
zro zro zro zro zro ksé zro zro;
ZT0 ZT0 ZT0 Zro zro zro ks7 zro,
Zro zro zro zro zro zro zro ks8};

ks= bigxt*bigk*bigx;

gamx= gam]*tl+gam2*t2+gam3*t3+gam4*t4+gamS*t5+gam6*t6+gam7*t7+gam8*t§;

96‘#**#“#*#tt****#*‘t*t#t*t#tt****t*i#tt‘**#***t#*#*#t*tt#***t*l#‘#*.#.t#*****!t#t##*

%TRANSFORMATION FROM CONTROL INPUTS TO FORCE COMPONENTS FOR EXCITING

%FLEXIBLE MODES
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96##*****#3*#*#“****t‘ttt##*#t##**tttttt*tt*t###tt###**t#t#****t***#*t‘##t#t#tttt#ttt

zro= 0*ones(3,1);

Tutow= [rdlnorm zro zro zZro 2zT0 2ZI0 ZIO ZX0;
zro rd2norm zZo zZ0 ZO O ZWO ZIO
zro zro rd3norm zZro ZT0 @O ZWO  ZIO;
zZto zZro zro rdémorm zro 2ZI0  ZIO0 ZIO
zro zo zro zro rdSnorm zZro zro zro
zZrto zZro zro zro zro rdénorm zro zro
zZro zo zZro zro zro zro rd7norm zro
zZo zZro zro zro zro zro  zro rd8norm]

96#“******‘***‘t*****#‘#t****t###*t‘tt*t*t#*****‘*#*t*tt‘#t##t#*t*t*‘tt**t*“*#tt****
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%RESOLVE ACTUATOR FORCE DIRECTIONS ALONG RACK COORDINATES TO COMPUTE
%FORCE

% AND TORQUE INPUTS FROM THE ACTUATORS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96*****#*‘#***#*‘*#tt***tt##*****#***t.#t‘#*‘****#‘t#**t##tt‘#*#‘t#tt*t**ttt*t**##t*t*

[ul,x])= crossudf(ract(:,1)',rd1norm’);

[u2,x}= crossudf{ract(:,2)',rd2norm');

[u3,x]= crossudf{ract(:,3)',rd3norm’);

[ud,x]= crossudfiract(:,4)',rd4norm");

[u5,x]= crossudf{ract(:,5)',rdSnorm’);

[u6,x}= crossudf(ract(:,6)',rd6norm’);

[u7,x}= crossudfiract(:,7)',rd7norm’);

[u8,x]= crossudfiract(:,8)',rd8norm");

Tutox= [rd1norm rd2norm rd3norm rd4norm rdSnorm rd6norm rd7norm rd8norm;

ul' u2' u3' ud us' uwé u7 uf ]

Tutox(:,7)=zeros(6,1);

96**# * * ¥k EEERXRE EEXXEBRXRRRER R RS SRR ERRERREE SRR R R
% RESOLVE RIGID BODY MOTION ALONG THE ACTUATOR PUSHRODS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96#****“*tt***tt***#*t**tt##*******#**t#****#****##‘***#*t#*#t#*‘*t#t*#tttt*ttt*t*tt*

[x,y,rc1]= crossudf(zro',ract(;,1));
[x,y,rc2]= crossudf(zro',ract(:,2)");
[x,y,rc3)= crossudf{zro',ract(;,3)");
[x,y,rc4]= crossudf{zro’,ract(:,4));
[x,y,rc5}= crossudf(zro',ract(:,5)');
[x,y.rc6]= crossudf(zro’,ract(:,6)");
[x,y,rc7]= crossudf{zro',ract(:,7));
[x,y,rc8]= crossudf(zro',ract(:,8)");
Txal= [eye(3) -rcl);
Txa2=[eye(3) -rc2);

Txa3= [eye(3) -rc3];

Txad= [eye(3) -rc4];

Txa5= [eye(3) -rc5];

Txa6= [eye(3) -1c6);
Txa7=[eye(3) -1c7];

Txa8= [eye(3) -1c8];

Txtop= Tutow'*[Txal;Txa2;Txa3;Txa4:Txa5 ;Txa6;Txa7;Txa8]

xp= Txtop;

Tptox= inv(xp"*xp)*xp'

xp=Txtop;

Tptox=inv(xp"*xp)*xp’;

96****t*t*#t#**t*t*tt*#**t*ttt***t*t#t* rkkx% 20 0 oo o O e o a2 oo ok ok o o ok K
% MAP RIGID BODY ACCELERATION TO ACCELEROMTER LOCATIONS

% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96**#t****#*‘t**tt**#*#‘t*tt****t*t*t‘*‘ttt*t**#***#ttt*.##*t‘***#t*#t##ttt*t#‘#*#*ltt

rcl={-17.7 14.1 27.9 y/12;

rc2={-17.7 11.2 -31.5)/12;

rc3=[17.711.2-31.5 ¥12;
[x,y,rcc1]= crossudf(rcl,rcl);
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[x,y,rcc2]= crossudf{rc2,rc2);
[x,y,rcc3]= crossudf{rc3,rc3);
Txtow= [eye(3) -rccl;

eye(3) -rcc2;

eye(3) -rcc3]
Twtom
Txtom= Twtom*Txtow
Tmtox= pinv(Txtom)
checkXtoX= Tmtox*Txtom

96***'**#‘#t*#**‘t*#*ttttttttt‘t**tt****#ttttttt*tt‘*##tt*t*##**tttttt*#t‘#t**t#t*###*

% TRANSFORMATION OF ACCELERATION COMMANDS TO ACTUATOR COMMANDS
% (THIS SECTION PROVIDED BY ARIS DEVELOPERS)

96‘#“““###‘#***t‘tttt*ttt*t*t*tt#tt*##*ttt‘*#t#‘*‘#‘*t*#t#t#tttt#t‘*“##t‘t##ttttt*

[torl,x1,x2}= crossudf{ract(:,1),rd(:,1)");

[tor2,x1,x2]= crossudf{ract(:,2)',rd(:,2)");

[tor3,x1,x2)= crossudf{ract(:,3)",rd(:,3)");

[tord,x1,x2]= crossudf(ract(:,4)',rd(:,4)";

[tor5,x1,x2]= crossudf(ract(:,5)",rd(:,5)");

[tor6,x1,x2}= crossudf{ract(:,6)'.,rd(:,6)";

[tor7,x1,x2]= crossudf(ract(:,7)"xd(:,7));

[tor8,x1,x2]}= crossudf{ract(:,8)",rd(:,8));

ttor= [torl' tor2' tor3' tor4' torS' tor6' tor7' tor8'};

fori=1:8,...

mag= norm(ttor(:,i));...
ttoru(;,i)= ttor(:,1)/mag;...

end

Tdelxtou= [rd1norm' ttoru(:,1)/norm(ract(:,1));
rd2norm' ttoru(:,2)/norm(ract(:,2));
rd3norm' ttoru(:,3)'/norm(ract(:,3));
rd4norm’ ttoru(:,4)/norm(ract(:,4));
rd5norm’ ttoru(:,5)/norm(ract(:,5));
rd6énorm’ ttoru(:,6)"/norm(ract(:,6));
rd7norm' ttoru(:,7)/norm(ract(:,7));
rdSnorm’ ttoru(:,8)'/norm(ract(:,8))};

Tdelxtou= pinv(Tutox)

checkxtox= Tutox*Tdelxtou

96‘**‘*3***#‘**t**ttt*#**tt#*tttttt“‘*#ttt‘t*‘tt‘t#**t#t##tt‘***t##tt*t*“‘#*##tttt#‘

% ESTIMATION OF STIFFNESS QUANTITIES FOR THE ENTIRE SYSTEM

96‘***!“****t#t#"#t***t**#**t*tttt**#*##ttt#*t*t#tt#t**#t#***tt*t***#t**‘#****t‘t**#

%POSITION VECTOR OF THE CENTROID OF THE UMBILICAL CONNECTION, MEASURED
%RELATIVE TO THE CENTER OF MASS OF THE RACK, IN RACK EQUILIBRIUM
%COORDINATES (FT)

dvect=[-0.363, -0.342, -2.42];
% SECOND ORDER TENSOR ASSOCIATED WITH dvect

dtens=[0 -dvect(3) dvect(2); dvect(3) 0 -dvect(1); -dvect(2) dvect(1) 0];
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%ESTIMATION OF STIFFNESS PARAMETERS FROM MEASURED STIFFNESS ON ORBIT

%USE MINIMUM UMBILICAL DATA FROM DIAGONAL OF UPPER LEFT MINOR TO COMPUTE
6-DOF STIFFNESS MATRIX

%SUBTRACT ACTUATOR STIFFNESS

lkx=Kmu(1,1)-ks(1,1);

ky=Kmu(2,2)-ks(2,2);

kz=Kmu(3,3)-ks(3,3);

kxy=Kmu(1,2)-ks(1,2);

kxz=Kmu(1,3)-ks(1,3);

kyz=Kmu(2,3)-ks(2,3);

Kt=zeros(3);
Ku(1,1)=kx;
Ku(2,2)=ky;
Ktr(3,3)=kz;
K1r(1,2)=kxy;
Ktr(1,3)=kxz;
Ku(2,1)=K1r(1,2);
Ktr(2,3)=kyz;
Ktr(3,1)=Ktr(1,3);
Kt(3,2)=Ktr(2,3);

Kumb=zeros(6);
Kumb(1:3,1:3)=K1tr;
Kumb(1:3,4:6)=-Ktr*dtens;
Kumb(4:6,1:3)=dtens*Ktr;
Kumb(4:6,4:6)=-dtens*Ktr*dtens;

% COMPUTE ESTIMATED TOTAL UMBILICAL CONTRIBUTION TO LOWER RIGHT MINOR
KLR=Kmu(4:6,4:6)-ks(4:6,4:6);

% COMPUTE ESTIMATED TORSIONAL STIFFNESS OF THE UMBILICALS

Ktor=zeros(3);

Ktor=KLR-Kumb(4:6,4:6);

Kumb(4:6,4:6)=Kumb(4:6,4:6)+Ktor;

%K=Kumb+Ks;

96##&#*‘***#t***tt#*ttt**t#*#*#*tt*!*t#*‘t*l‘***t#***t***#t*ttt#*#‘#lt‘t**t*t‘ttt*ttt*

%EIGENVALUES AND EIGENVECTORS OF SYSTEM WITH UMBILICALS AND ACTUATORS
% AND
%APPROXIMATION OF PHYSICAL DAMPING MATRIX FOR UMBILICALS AND ACTUATORS

96#***##***t#*t*#**t##****tt*#tttt*t‘t*t**‘**t*ttt*##***‘t#t*tttt###t!#tt*t*tt#*t*****

%TOTAL STIFFNESS: UMBILICALS AND ACTUATORS

K=Kmu;
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[V,D]=eig(invmass*K);
%NORMALIZED EIGENVECTORS
massdiag=V"*massmat*V;

fori=1:6
phi(:,0)=V(:,i)/(massdiag(i,i))"0.5;
end

%APPROXIMATION FOR UMBILICAL AND ACTUATOR DAMPING IN PHYSICAL
COORDINATES

C=inv(phi')*2*0.015*D.”0.5*inv(phi);

96‘##tt*t##‘ttttﬁ“*#.*tt*‘#ltt*“.t‘*t#ttt‘#tttt#t##tttt#‘t#*ttt“tttttttt#t#t'#t‘t#*

% AUXILLIARY PARAMETERS

96#t#tt*3###“*3“*‘##‘**“*#***#‘*t'tt*t*ttt‘t#tt#*ttttt#l#‘*#t“tttltt“t‘**#*tt‘tt*

twozeta=0.03*eye(6);
intoft=0.08333*eye(9);

%Decoupling Parameters
%These are for the B1G_B2 test
%cg Decoupling (ft)

cgx=0.015;

cgy=0.02;

cgz=0.065;

idm=massmat;
ctm=eye(6,6);
ctmi=eye(6,6);
ctmeg=[0, cgz,-cgy;
-cgz,0,cgx;
cgy,-cgx,0};

ctm(1:3,4:6)=ctmcg;
ctmi(4:6,1:3)=-ctmcg;

pk=zeros(6);

pk=K;

w2=14;

for i=1:6
pk(i,i)=w2*w2*massmat(i,i}-K(i,i);
end

% Off-diagonal (rotational) stiffness cancellation matrix
% elements set to zero for RME

pk(4,5)=0;

pk(4,6)=0;

pk(5,4)=0;

pk(5,6)=0;
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pk(6,4)=0;
Pk(6,5)=0;

Gain=1*eye(6);
Gainl=1*eye(6);

%Position vector of the pth disturber, relative to the rack center of mass

rpvect=[1.75,1.59,3.17};

rptens={0,-rpvect(1,3),rpvect(1,2);
pvect(1,3),0,-rpvect(1,1);
-rpvect(1,2),rpvect(1,1),0];

%ttt##tt#**tt‘lt*t*t gk xk *tt‘#ttttttt‘*t#t*tl&*tt*tttt*ttt
% Plotting Routines
%t#tt*tt*t*‘#t‘t#t‘ * BRREEREBERRXER SR ERESE

% Closed-loop State-space realization: Continuous TF
w=logspace(-3,2,150);

whz=w/6.28;

[AcLBcl,Ccl,Dcl)=linmod('mme_clh');
[mag,phase]=bode(Acl,Bcl,Ccl,Dcl,3,w);
maglh=log10(mag)

Ysemilogx(whz,20*maglh(:,1))

%grid

%axis([.001 10 -60 10])

%[Acl,Bel,Ccl,Dclj=linmod(‘'rme_cb');
%[mag,phase]=bode(AcL,BcLCcl,Decl, 1 W),
%magib=log10(mag);

Y%semilogx(whz,20*maglh(:,1 ),'y—',whz,20*maglb(:,1),'y")
%grid
%axis([.001 10 -60 10])

% Set up vector to hold border frequencies of the 1/3
% octave bands. Start at 6 Hz.

wtob=zeros(13,1);

sz_wtob=size(wtob);

wtob(1)=6.00000000;

%Find starting and ending points for 1/3 octave breakdown
for i=1:sz_wtob(1,1)-1;

wtob(i+1)=wtob(i)/2;

end

%Find border points for the 1/3 octaves over full
%bandwidth

pow_teni=log10(wtob(13));
pow_tenf=log10(wtob(1));

wbord=logspace(pow_teni,pow_tenf,sz_wtob(1,1 )*3-2)';
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%Compute center fregencies of 1/3 octave bands
wef=zeros((sz_wtob-1)*3,1);

for i=1:(sz_wtob-1)*3
wef(i)=(wbord(i)+wbord(i+1))/2;

end

%Average Transfer Function over 1/3 Octaves
count=zeros((sz_wtob-1)*3,1);
magtot=zeros((sz_wtob-1)*3,1);
magave=zeros((sz_wtob-1)*3,1);

%sort data into 1/3 octave bands and average
for i=1:150

for j=1:(sz_wtob-1)*3

if whz(i)>=wbord(j) & whz(i)<=wbord(j+1)
magtot(j)=magtot(j}+mag(i);
count(j)=count(j}+1;

end

end

end

for j=1:(sz_wtob-1)*3
magave(j)=magtot(j)/count(j);
maglave(j)=log10(magave(j));
end

%x-dir atten. in dB from page 126
gnx=[-6.25,-8.74,-8. 125,-12.5,-13.75,-16.9,-18.8,-18.8,-22,-22.5,-25,-27.5,-28.1,-28.8,-30.6];

%y-dir atten. from page 127
gny={-6.5,-9.4,-11.8,-13.5,-14.7,-16.3,-17.6,-21 2,-22.9,-24.1,-22.4,-24.7,-31.8,-29.4,-30.6];

%z-dir atten. from pg. 128
gnz=[-8.75,-6.25,-8.l,—8.8,—12.5,-13.1,-16.3,-16.3,-17.3,-17,-18.1,-21.3,-23.8,-22,-23.1]

semilogx(wcf,20*maglave,'*',wcf{(15:29),gnz,'0");
axis([.001 10 -60 10])

for i=1:3

{AcLBcl,Ccl,Dcl}=linmod(‘rme_clh’);
[mag,phase]=bode(Acl,Bcl,Ccl,DcLi,w);

magl(:,i)=log10(mag);

PHASE(:,i)=phase

end

semilogx(whz,20*magl(:,1),'y’,whz,20*magl( ;,2),'y--",whz,20*magl(:,3),'y.");
axis([.001 10 -150 40]);
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